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GLAUCOMA DIAGNOSTICS USING MACHINE LEARNING METHODS

The research focuses on eusage of machinel earning algorithms in glaucoma diagnostics. The objective is to
analyze and compare various machine learning algorithms by constructing classification systems that verify glaucoma
in ICT photos. The study involves extracting feature from photos, classifiying them using this features and evaluating
the effectivenes of methods. This approach provides insights into creation of automated glaucoma diagnostic system,
contributing to faster and safer medical process.
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1. Introduction

In today’s era of rapid advancements in medicine and
increasing demand for precise diagnostics, automation
has become a fundamental aspect of healthcare innova-
tion. The ability to automate diagnostic systems not only
improves accuracy and efficiency but also gives a competi-
tive advantage in the healthcare market. As clinical needs
increase, achieving reliable and swift diagnostic perfor-
mance is non-negotiable.

Glaucoma is an incurable disease that causes vision
loss and is the second leading cause of blindness in the
world [1]. To detect glaucoma, experts use several imag-
ing techniques, including confocal scanning laser oph-
thalmoscopy (CSLO), Heidelberg retinal tomography
(HRT), optical coherence tomography (OCT), and fun-
dus imaging [3]. Based on the imaging technique, several
features of the retinal structure, such as the optic nerve
head (ONH), the cup, peripapillary atrophy, and the reti-
nal nerve fiber layer, need to be observed to detect glauco-
ma. In the fundus image, the ONH is a bright and round
area, and inside the ONH is a smaller round area called
the cup. Peripapillary atrophy appears as a crescent that
overlaps with the area outside the ONH. The retinal nerve
fiber layer is also located outside the ONH, which has a
white striped structure [3; 4].

Machine learning, a transformative intelligence tech-
nology, has reshaped the world of diagnostics. Its ca-
pacity to process and analyze vast amounts of medical
data, including images and patient records, is making it
an important tool in addressing complex health prob-
lems. Glaucoma, a leading cause of irreversible blindness
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worldwide, is one such condition where early and accu-
rate diagnosis can significantly reduce the risk of vision
loss. Building and optimizing a functional ML model for
glaucoma detection and ensuring they deliver consistent
results across diverse clinical scenarios is crucial for succes
in a world of modern medicine.

This article explores the role of machine learning in
glaucoma diagnosis, with a particular focus on difference
in efficiency between various methods of classsification.
Among the myriad factors influencing model efficacy,
data processing and feature extraction stand out as piv-
otal. These steps are crucial to ensuring the model accu-
rately identifies early signs of glaucoma, such as changes
in the optic nerve head and retinal nerve fiber layer, from
diagnostic imaging modalities of optical coherence to-
mography (OCT) [5;6].

The findings presented in this article are important
for technologists aiming to create their diagnostic tools.
They underscore the importance of balancing techni-
cal performance with clinical applicability, setting a new
benchmark for excellence in medical innovation. Finally,
this research contributes to the broader field of healthcare
technology, opening new pathways for improving patient
outcomes and advancing global health standards

2. Why glaucoma diagnostic is important

Diagnosing glaucoma accurately and early is critical
for several reasons, as it directly impacts patient’s out-
come.Timely detection is the requierment of effective
glaucoma management [7]. Early diagnosis enables pro-
active intervention, which can significantly slow the pro-
gression of the disease and preserve vision:
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— Preventing irreversible damage: Glaucoma in early
stages progresses without noticeable symptoms until sig-
nificant vision loss occurs. Early detection is the only way
to intervene before permanent damage sets in.

— Avoiding advanced stages: Advanced glaucoma of-
ten requires more invasive and costly treatments, such
as surgery. Early intervention reduces the likelihood of
reaching this.

Effective glaucoma diagnostics also play a key role in
enhancing healthcare efficiency:

— Reducing the burden on specialists: Automated or
semi-automated diagnostic tools powered by machine
learning can assist ophthalmologists, allowing them to
focus on complex cases while routine screenings are han-
dled faster.

— Improving accessibility: Many regions lack access
to specialists or special equipment. Automated diagnostic
methods can help bridge this gap, especially in impover-
ished areas.

— Cost savings: The automation helps save on salaries
for specialists, while early diagnosis reduces the long-term
healthcare costs required for managing advanced glauco-
ma and its complications.

From a societal perspective, robust diagnostic systems
have far-reaching benefits:

— Reducing the global burden of blindness: Glaucoma
is a leading cause of preventable blindness worldwide.
Early and accurate diagnosis can significantly lower its
prevalence.

— Promoting health equity: Accessible and efficient
diagnostic tools ensure that even individuals in resource-
limited settings can benefit from early detection and treat-
ment.

— Enhancing public health outcomes: Early interven-
tions reduce disability rates and associated social and eco-
nomic costs.

Lastly, advancements in glaucoma diagnostics contrib-
ute to broader innovations in ophthalmology and medical
technology:

— Data-driven insights: Machine learning-powered
diagnostic systems generate valuable data that can inform
better treatment protocols and personalized care.

— Encouraging innovation: Research and develop-
ment in glaucoma diagnostics often pave the way for im-
proved diagnostic methods in other medical fields.

Automated glaucoma diagnostics is not just about de-
tecting a disease; it’s about strengthening healthcare sys-
tems, and contributing to the global fight against blind-
ness. By prioritizing medical innovations, the scientific
community can ensure that people receive the care they
need when it matters most.

3. Glaucoma diagnostics with machine learning

In the context of glaucoma diagnosis, precision and
reliability are usually achieved with two methods:

— Diagnostic Accuracy —precise identification of glau-
coma signs ensures correct differentiation between healthy
and ill eyes. Accurate diagnostics reduce false positives
and negatives, allowing for sureness in treating patients.

— Time of Diagnosis — the speed at which mages are
analyzed is crucial for treatment effectiveness. Rapid di-
agnostic methods provide a critical window for interven-
tion to preserve vision and prevent progression.

Ensuring accurate analysis and feature extraction is es-
sential for improving glaucoma diagnostic outcomes and
advancing eye care [12].

Several factors influence the effectiveness of glaucoma
diagnostics. Here are the primary considerations:

— Localization of regions of interest (ROI): The optic
nerve head must be accurately separated from the images
to ensure correct analysis. Improper localization can de-
valuate the diagnosis accuracy [13; 14].

— Image quality and resolution: High-quality fundus
images and OCT scans case detecting subtle structural
changes indicative of glaucoma. Poor image resolution
can obscure key details and lead to diagnostic errors.

— Algorithm robustness: Machine learning algorithms
must be robust enough to handle variations in imaging
data, such as differences in illumination, contrast, or ana-
tomical variability.

— Integration of multiple imaging modalities:
Combining data from various techniques, like OCT, fun-
dus photography, and visual field tests, enhances accuracy
by providing an informative view of retinal health [9].

Considering these factors, it is crucial to apply effec-
tive techniques and tools to improve the diagnostic pro-
cess. Some key approaches include:

— Convolutional Neural Networks (CNNs);

— Support Vector Machines (SVMs):

— Unsupervised learning techniques;

— Classification algorithms;

— Ensemble learning models;.

— Deep learning models for segmentation,;

— Reinforcement learning;

— Transfer learning.

By focusing on these approaches, researchers and cli-
nicians can develop and deploy computer-aided diagnos-
tic (CAD) tools. These tools have the potential to change
diagnosis of glaucoma, making it accessible to populations
of poor countries and giving a chance for early interven-
tion. By prioritizing such research scientists can solve one
of the world’s leading causes of blindness and improve pa-
tient outcomes.

4. Selection of classification methods

To conduct a study of glaucoma diagnostic methods, a
decision was made to utilize the k-Nearest Neighbors (k-
NN) and Naive Bayes classifications algorithms for sev-
eral reasons. These choices are explained by the specifics
of building a reliable diagnostic system:
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— Simplification of Model Complexity:

Both k-NN and Naive Bayes are relatively simple yet
effective machine learning algorithms. k-NN avoids as-
sumptions about data distribution, and Naive Bayes uses
straightforward probability calculations, making them
ideal for initial evaluations. This simplicity ensures trans-
parency in their operation, enabling clear interpretation of
results without introducing unnecessary complexity [10].

— Measurement and Comparison Capability:

For glaucoma diagnosis, each algorithm’s perfor-
mance is measured using standard metrics such as
sensitivity,specifity and accuracy. The use of k-NN and
Naive Bayes facilitates direct comparison of their ability
to classify eye images correctly. Each classifier serves as
a separate diagnostic approach, enabling the analysis of
their strengths and weaknesses separately from one an-
other [11].

— Convenience for Results Analysis:

Both classifiers provide clear outputs that allow for
straightforward assessment of diagnostic performance.
k-NN assigns class labels based on proximity, and Naive
Bayes calculates posterior probabilities for each class. This
enables the identification of which features or parameters
contribute most to diagnostic accuracy, aiding in the fea-
ture selection and preprocessing techniques.

Given these factors, the combination of k-NN and
Naive Bayes is an optimal choice for glaucoma diagnos-
tic research [15]. These methods provide complementary
simplicity and performance, making them effective tools
for assessing diagnostic system efficacy while maintaining
experimental clarity and reliability.

5. Software development for conducting research

To conduct this research, a specialized program was
developed for processing the image features by isolating
distinct mathematical characteristics derived from pixel-
level data. The program’s workflow is organized into a
series of structured steps that allow for the completion of
image classification tasks. Below is an overview of the pro-
gram’s work process and its corresponding modules.

When the program is launched, users can access op-
tions to select a dataset and initiate analyzing tasks.

Image Selection and Preprocessing.

When the user selects a folder containing images, the
program takes each file in the folder. The ImageCrop
module then crops the area of interest within each image
by converting the image to HSV format and isolating the
the vakue layer. Every pixel that has value below 97% of
the brightest pixel is removed, turning image into binary.
The biggest is found among remaining pixels and it bor-
ders are overlaid with original image, turning it into zone
of interest. The code (Fig. 1) for cropping the image and
the result (Fig. 2). of it is shown below.
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img = cv.mread(file, cv IMREAD_COLOR)
1f img is Nooe:
raise VadoeError("Image not found o unable
o load %)
#abow_image(img. “Original mage”)
b - ev.evtColor(img,
v COLOR_BGRLAB)
1_channel, 3, b= cv.splia(lab)
#show_image(l_channel)
chabe = cvoreameCLAHE(chplimn=20,
tleGndSuze=(8, §))
¢l = clabe appiy(]_channel)
wshow_image(cl)
limg = cv.merge((cl, 3, b))
exbanced mmg = cv.eviColoe(limg,
v COLOR_LAB2BGR)
#show_tmage(cobanced_img,  “Enhanced
Image”)
# Coavert to HSV' for contour detection
By - ev.evtColor(img,
v COLOR_BGRIHSV)

_ = cv.threshold(v, max_val * per, 255,
cv.THRESH_BINARY)
#sbow_image(th, “Thresholded mage”)
contonrs, hieraschy = cv.findContours(th,
cvRETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
max_xea=0
largest_ccatiour = Nooe
for et m contours:
area = ov contourArea(cnt)
f area > max_arex
max_area = area
largest_coatour = ¢t
contour_image = img copy()
if rgest_contour is not Nooe:
cv.drmContours(contour_image,
[largest_consonr], -1, (0, 255, 0), 2) # Green cootour
#show_smage(coatour_tmage, “Coatours oa
Image”)
X ¥ W b =
cvboundimgRect(largest_consonr)
roi = mng{y-y+h, xx+0]

R 3, v = cv.split(hsy) #show_mmage(ror, "Regxca of Interest”)
#show_image(v) retarn 108
max_val = op max(v) else:
per=097 peint("No costours foend ")
retarm Nooe

Fig. 1. Cropping of area of interest

Fig. 2. a) Original image, b) Processed Thresholded Value
channel, c¢) Cropped area of interest

The cropped area of the image is then passed to the
FeatureExtraction module, where image features are ex-
tracted. In this research it includes the mean, standard
deviation, symmetry, and skewness. These features are
derived from pixel intensity values of images and collect
data for classifications. Below is the code (Fig. 3) for the
function that does it.

b.g.r=cv.split(img) r=1«(1/41+sigma))
e=0 row=(]
count=0 for pixel in g
for pixel2 in pixel
for pixel in g: row.append(pixel2)
for pixel2 in pixel sk=(skew(row, axis=0, bias=True))
e+=pixel2 ks=(kurtosis(row, axis=0, bias=True))
count+=1 std=math.sqri(sigma)
u=e/count u=round(u.4)
e=0 std=round(std.4)
for pixel in g: r=round(rd)
for pixel2 in pixel sk=round(sk.4)

e+=(math.pow(pixel2-u,2))
sigma=e/count

ks=round(ks,4)
print(u.std.r.sk.ks)
return u,std,r,sk.ks

Fig. 3. Feature extraction

Training the Nearest Neighbor System

Using the HandleKnn module, users can train a near-
est neighbors’ classification system. When training is
initiated, the program extracts feature from the provided
training images and stores them in Json format. Each fea-
ture set is associated with a specific class label for later
reference during testing. The distance matrix is calculated
using the Euclidean distance (d), which is found using
formula (1) below.

c

d=[>(x;-y), (1)

i=l1
where i is the recurrence index, which is the number of
features. The feature matrix of the sample data is expressed
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by x;, while for the test data it is expressed by y;. The code
(Fig. 4). For it is shown below.

folder_path = filedialog.askdirectory()
neg =]
i=0
for filename in os.scandir(folder_path):
i+=1
if filename.is_file():
img = cropImg(filename.path)
ex = extract(img)

neg.append(ex)
ifi==
break

with open('Studies/knn.json') as f:
data = json.load(f)

data[name] = neg
with open('Studies/knn.json', 'w') as file:
json.dump(data, file, indent=4)

Fig. 4. KNN training

In the same way users can train a naive bayes system.
The naive bayes module calculates probabilities for each
class based on extracted features. A Gaussian probability
distribution is calculated for each feature, which is found
using formula (2) below.

P(xle)* P(c)

P(clx)= (2)
P(x)

where, P(c|x) is the posterior probability of the class (c,
target) with a given predictor (x, attributes), P(c) is the prior
probability of the class, P(x|c) is the probability that is the
probability of a given class of the predictor, P(x) is the prior
probability of the predictor.

These probabilities are stored for use in the testing
phase. The code (Fig. 5) for training it is shown below.

folder_path = filedialog.askdirectory()
if not folder_path:

print("No folder selected.”)
retum

neg =[]
for i, filename in enumerate(os.scandir(folder_path)):
if 1>=50:

break

if filename.is_file():
img = cropImg(filename.path)
X = extract(img)

neg.append(ex)

# Calculate mean and variance for each feature
stats = ]
for i1 in range(len(neg[0])):
¢ol = [entry[i] for entry in neg]
mean = sum(col) / len(col)
yariance = math. sqn(sum([(x mean) ** 2 for x in col]) / (Ien(col) - 1))
stats.append([mean, variance, len(col)])

# Update JSON file

with open(‘Studies/nb.json’, 'r') as f:
data = json.load(f)
except (FileNotFoundError, json. JSONDecodeError):
data = {}
data[name] = stats

with open('Studies/nb.json', "'wW') as f:
json.dump(data, f, indent=4)

Fig. 5. Naive Bayes training

After training in either of tests, the program automati-
cally saves the values of extracted features and Gaussian
probabilities, rewriting existing records in its files.

Testing the K-Nearest Neighbor System.

Following this the program allows to test the trained
models with a new set of images. In KNN The pro-
gram accepts a folder of test images, extracts features, and
compares them against the training data using the k-NN
algorithm. The class of the nearest matches (default k=5)
is assigned to the test images. The algorithm (Fig. 6). is
shown in the image below.

folder_path = Gledialog.arkdirectory() dint==mnath powieslil-

£= open(Studiesknn json’) poini],2)
dist=roumd{math. sqri{dist)4)
dnta = joon lond(f) pos. append{dist)
count,countp=0,0
felose() pos.sort()
nege=0 neg.son()
poscel
stats=[] for i m range( 10):
ehje={} ffpol-lﬂ]mmlol}
results = {} countnt
for filename in owscandir{folder_path): nep | WDU
if filennme.is_file(): else:
countp=1
img=croplmg(filename path) pos.pop()
ex=cxiract(img) iflcountn=sountp):
stats.append(ex) ol.u-[i'lmnnnl- negative”
ohjs{filennme]=" nege
aegpor={1(] iz
for point in data["neg"]: objs[filename]="positive”
dist= posce=1
for i in range(S): results[flename. path] =
dist+=math pow{exfi]- objs[filennme]

pointfil.2)
distmround(math sqra(dist),4)
neg.append{dist) print{entry.objsfentry])
for point in data["pos”]; printinege.posc)
dist=0 return results

for i in range(S):
Fig. 6. KNN testing

for entry in objs:

In Naive Bayes Testing

The program extracts feature from test images and cal-
culates their class probabilities using the Gaussian proba-
bility distribution calculated during training. Probabilities
for each feature and class are multiplied to determine the
most likely class. The class with the highest combined
probability is assigned to each test image (Fig. 7).

dof predictClass(stats ], statsl, row):
total_rows = stats 1[0][2] + stats2[0][2]
lities = {

results = [}
for filename in os scandir(folder_path)
“peg”: stats1[0][2] / total_rows, if filename.is_file():
“pos”: stats2[0][2] / total_rows, g = croplmp(filename. path)
} ox = extract(img)
probabil
predictClass(data["neg”], datal"pos”], ex)
if probabilities["pos®] >
probabilities["neg"]

objsffilename path] = "positive”
posc += 1

else
objs{filename path] = "negative
nege += 1

hities =
for i in range(len(stats1)):

bilities["neg"] -

gaussianProbability(row{i], stats1[i)[0], stats1[:][1])

lities["pos”™]  *=

paussinnProbability(rowdi, stats2[i][0], stats2[s][1])
retum probabilities

def handle_nbTest(event)
folder_path = filedinlog askdirectory()
if not folder_path
print{"No folder selected )
returm

results[filename path] =
objs[filename path]

# Dusplay results
for entry in objs
print(entry, objs[entry]}

ry
with open('Studies/'nb jsor, 'r) as I
Boad( print(fNegative: {negel,

data = json. Positive:

enpl (FilaNotFoundError, {pose}”)
json ISONDecodeError) as e:
print(f*Ervor loading model: (e}

retarn

“Owmxa ToumocTi: 85 879%7) N
Replace with dynamic caleulation if possible

retum results
objs = {}
nege, posc = 0, 0

Fig. 7. Testing of Naive Bayes
Classification Results.
After testing, the program displays the classification re-
sults in an organized list format. FFor each test image, the
assigned class and its diagnosis are shown in a row (Fig. 8).

wro sy | 1

Nuerosca | ™ ™

Fie 9109

Fie 60009

Fie 1oy

Fi

=

g. 8. Results showcase
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6. Results of experimental data processing

6.1. Stage 1. A priori information analysis.

Here is important information about the software:

— the software is a computer application written on
python language using pandas and tinder libraries;

— the software runs on a computer device running the
Windows operating system;

— the software uses Supabase as a server.

The task is to classify the images using the classifica-
tion methods by analyzing the extracted features of zone of
interest. The methods selected are KNN and Naive bayes

6.2. Stage 2. Selection of extracted features

The features used for glaucoma diagnostics are based
on mathematical properties derived from image data. The
features used for glaucoma diagnostics are based on math-
ematical properties derived from image data (Table 1).

Table 1
Influencing Features and Formulas
Name Formula
1 n
Mean X = —(in)
=
+00
Standard deviation I (x—p)? f(x)dx
1
Smoothness R=1- 5
(I+o%)
Sk 1=K = K
ewness e vy
1 3 k23 /2
Kurtosis SE= %
4

6.3. Stage 3. Extracted features and calculated
probabilities
The the results of the feature extractions and probabil-
ity calculatons are shown experiment are shown in im-
ages below (Fig. 9, Fig. 10, Fig. 11).

Cepeare Crangaptt CepegHbo Haxun CumeTpuyHIC

120,1382 30,914 0,999  1,4756 1,8521
142,2805 22,433 0,998  1,8812 4,8178
142,4136 16,3359  0,9963 0,452 0,0575
143,8878 34,0084  0,9991 0,115 -0,2749
1455046 38,082 0,9993  0,3235 -0,4503
148,4092 33,4064 09991  0,4077 -0,9211
148,6205 35,0093 09992  0,9008 0,2305
152,1596 32,636 09991  1,0236 0,2328
152,6652 35,7075 0,9992  0,3582 -0,687
155,1497 26,2275  0,9985  0,4612 -0,8074
156,8304 38,0055 0,9993  0,4389 -0,7978
156,9007 22,3374 0,998  0,0155 -0,3966
157,6289 26,8029 09986  0,8329 0,3782
157,7968 39,0685 09993 -0,0332 -0,8488
157,8877 26,3418 09986  0,8431 0,4507
159,5874 28,5238 0,9988  0,3665 0,0207
159,724 29,693  0,9989 0,077 -0,7324
160,4954 29,3574 0,9988  0,3948 0,0571
160,5681 26,2299 09985  0,3405 -0,1495
160,8676 34,391  0,9992  0,5231 0,2546
161,2228 41,0192 09994  0,0979 -0,9257
161,4685 36,1287  0,9992 0,488 -0,4346
163,61 44,2121 09995  0,6727 -0,4453
164,9867 36,8435  0,9993 0,348 -0,6075
165,2853 40,7958 09994  0,1539 -0,6958
1656187 50,7763 09996  0,1716 -0,8692
165,7387 32,9399  0,9991  0,6919 0,3952
166,2879 37,3556  0,9993  0,3873 -0,8522
166,9214 24,5808 0,9983  0,4487 -0,2962

Fig. 9. Matrix of extracted features from healthy eyes
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CepeaHe CranpaprHe CepeaHbo Haxun CumeTtpuui
109,9145 24,8974 0,9984 0,7302 1,0033
118,8475 26,515 0,9986 1,0831 1,9741
118,8862 23,055 0,9981 1,44 3,8219
121,3836 16,3117 0,9963 2,1474 5,2323
124,7003 6,8113 0,9789 -0,256 -0,8429
131,2645 14,964 0,9956 2,1492 6,0521
131,6755 13,6545 0,9947 2,137 6,7526
132,0342 18,3878 0,9971 1,119 2,9128
133,2538 29,8589 0,9989 1,0616 0,8352
133,5907 14,3645 0,9952 0,7938 0,0879
135,8177 14,215 0,9951 1,1616 1,7715
136,2263 33,8043 0,9991 1,0261 1,0906
136,5863 19,6971 0,9974 0,5143 4,9551
139,5907 28,8155 0,9988 1,2055 0,5933
140,4851 31,4879 0,999 0,9259 0,8188
145,0682 32,7039 0,9991 0,7913 -0,1902

145,773 22,864 0,9981 0,5069 -0,5143
147,6759 33,2959 0,9991 1,2988 0,9395
148,0591 38,892 0,9993 0,7399 -0,2339
150,6764 26,1283 0,9985 1,9908 4,5609
151,1074 31,948 0,999 1,1418 1,4957

153,368 38,7868 0,9993 0,3543 -0,6806
158,2881 29,1061 0,9988 0,5992 -0,5209
159,9547 40,18 0,9994 0,3456 -0,8605
160,4964 39,6162 0,9994 0,6513 -0,3536
160,9071 38,38 0,9993 0,847 -0,5287

161,558 33,1798 0,9991 0,632 -0,458
161,8373 28,8104 0,9988 0,1482 -0,8056
161,8744 24,0992 0,9983 0,4553 -0,5675

Fig. 10. Matrix of extracted features from healthy eyes
(epepe Cagagme (spepeonagpanase Haw Omepeicns
Jpeoe IR IS U7 W3S ST BN 0% 1 09 358 181 OSNM -LINS 481 Q3
Jope WSUIG NAIW 1B GRIB MO WL 03B L 098 U5M M0 05 -LA0L 6PN 056
Fig. 11. Matrix of calculated probabilities
for sick and healthy eyes

6.4. Stage 4. Comparsion of.extracted features

Using the extracted features we can create a graphics
to compare the values of features in images of healthy and
sick eyes (Fig. 12, Fig.13, Fig. 14, Fig. 15, Fig. 16).
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Fig. 12. Histogram of Mean value of healthy (blue)
and sick (red) eyes
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Fig. 13. Histogram of Standard deviation value
of healthy (blue) and sick (red) eyes
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Fig. 14. Histogram of Skewness value of healthy (blue)

and sick (red) eyes
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Fig. 15. Histogram of Kurtosis value of healthy (blue)
and sick (red) eyes

w— HaXWUN 3A0pOBE w— HaXWUN XBOPE
Fig. 16. Histogram of Smoothness value of healthy (blue)
and sick (red) eyes

6.5. Stage 5. Classification methods statistics

After evaluating results here are specifics of algorithms.

The knn results:

— Sensitivity: 0.9748 — close to naive bayes;

— Specifity: 0.9502 — much lower than naive bayes;
— Accuracy: 0.9329 — a little higher than naive bayes.

The naive-bayes results:

— Sensitivity: 0.9748 — close to knn;
— Specify: 0.9502 — much higher than knn;
— Accuracy: 0.9329 a little lower than knn.
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Fig. 17. Histogram of the results of the methods
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Fig. 18. The truth table of knn method is following
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Fig. 19. The truth table of naive bayes method is following

6.5. Stage 6. Analysis of the significance of the out-
comes:

a) Analysis of extracted features

As can be seen from the images, the mean value of
healthy eyes has a smaller range of values than that of
patients. The standard deviation is almost the same in
both cases. The slope value of healthy eyes has a larger
minimum and fewer fluctuations and has a much small-
er decline relative to the growth of the mean value. The
skewness value of diseased eyes has a lot of fluctuations
that drops very quickly with the growth of the mean value.
The kurtosis of sick eyes sometimes shows anomalies. The
smoothness of sick eyes correlates to the value of mean,
while healthy eyes have a stable range of values.

b) Analysis of classification algorithm results

Looking at the graphics and histogram we can describe
strengths and weaknesses of each method. The speed of
and accuracy of naive bayes gives him an edge over the
knn, yet it lacks in lacks in the specificity and has a high
sensitivity. Looking at their truth tables we can see that
naive bayes has a much better recognition of ill eyes, yet it
falsely signifies some of the healthy ones. Knn on the other
hand fares better with finding healthy eyes and struggles
with marking healthy eyes as ill more than the naive bayes.
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Conclusion

The paper presents a method for processing image fea-
tures based on the extraction of special mathematical fea-
tures based on the characteristics of image pixels. These
features provide information about changes in the image
space in the form of points, edges and objects that stand
out in the image.

According to values of sensitivity, specificity and ac-
curacy, and the stats on truth tables, knn has a close preci-
sion to naive bayes, while having a slower speed of work.

The results of the study showed that the use of fea-
ture extraction for the analysis of eye images increases the
speed and reliability of diagnosis. In addition, the results
obtained allow us to conclude the versatility of the meth-
od and the possibility of its effective application for image
classification.

In the field of medical diagnostics, using advanced
machine learning algorithms is critical for efficient dis-
ease treatment. This study focuses on the application of k-
Nearest Neighbors (k-NN) and Naive Bayes classifiers for
glaucoma diagnostics, explaining their role in glaucoma
diagnostics. By evaluating these algorithms, the research
offers insights for healthcare professionals and developers
aiming to enhance diagnostic systems.

The findings highlight the advantages and limitations
of each method. Naive Bayes excels with large datasets,
offering speed and efficiency as a linear classifier, while
ensuring high accuracy under the assumption of feature
independence. In contrast, k-NN shines in scenarios with
complex decision boundaries or where independence as-
sumptions fail, providing flexibility and accuracy without
requiring prior knowledge of probability distributions.
Although k-NN can be demanding in resources, its abil-
ity to handle rare events and its simplicity in setup makes
it a strong candidate for difficult situations. However, the
study also identifies challenges, such as k-NN's sensitivity
to high-dimensional data and Naive Bayes' reliance on the
independence assumption, which may not hold in all cases.

This research shows the potential of machine learning
in medical diagnostics, clearing the path for innovative
solutions that meet the demand for precision and reliabil-
ity in healthcare applications.
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