
75

УДК 004.4: 004.4	 DOi 10.30837/ bi.2024.2(101).11

Yuliia Koba1, Oleksii Nazarov2, Nataliia Nazarova3
1Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, yuliia.koba@nure.ua,

ORCID iD: 0000-0003-1837-6041
2 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, oleksii.nazarov1@nure.ua,

ORCID iD: 0000-0001-8682-5000
3 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, nataliia.nazarova@nure.ua,

ORCID iD: 0009-0007-7816-7088

RESEARCH ON METHODS OF OPTIMIZING FLUTTER APPLICATIONS
RENDERING USING A LINEAR REGRESSION MODEL

The research focuses on optimizing the rendering performance of Flutter applications using a linear regression
model. The objective is to analyze and compare various rendering optimization techniques by constructing regression
equations that model their impact on performance. The study involves identifying critical factors influencing rendering
efficiency, applying optimization methods, and using the regression model to evaluate their effectiveness. This approach
provides insights into improving UI flow rendering in Flutter applications, contributing to enhanced performance and
user experience.

CROSSPLATFORM, LINEAR REGRESSION, MOBILE APPS, OPTIMIZATION, RENDERING

Коба Ю.Ю., Назаров О.С., Назарова Н.В. Дослідження методів оптимізації рендерингу додатків Flutter за до-
помогою моделі лінійної регресії. Дослідження зосереджено на оптимізації продуктивності візуалізації програм
Flutter за допомогою моделі лінійної регресії. Мета полягає в тому, щоб проаналізувати та порівняти різні
методи оптимізації візуалізації шляхом побудови рівнянь регресії, які моделюють їхній вплив на продуктив-
ність. Дослідження передбачає виявлення критичних факторів, що впливають на ефективність рендерингу,
застосування методів оптимізації та використання регресійної моделі для оцінки їх ефективності. Цей підхід
дає змогу зрозуміти, як покращити візуалізацію потоку інтерфейсу користувача в програмах Flutter, сприяючи
підвищенню продуктивності та взаємодії з користувачем.

КРОСПЛАТФОРМА, ЛІНІЙНА РЕГРЕСІЯ, МОБІЛЬНІ ПРОГРАМИ, ОПТИМІЗАЦІЯ, РЕНДЕРИНГ

Introduction

In today’s fast-paced world of mobile technology in-
novation and escalating demands for application perfor-
mance, optimization has emerged as a cornerstone of
successful software development. The ability to optimize
applications not only enhances the user experience but
also determines the competitive edge of an application in
the saturated mobile market. As user expectations evolve,
smooth performance, minimal latency, and efficient re-
source utilization have become non-negotiable.

Flutter, a widely adopted cross-platform framework
[1], has revolutionized the app development landscape.
Its ability to enable seamless application development for
multiple operating systems while reducing development
time and resources makes it an ideal choice for modern
developers. However, creating a functional application is
only the first step. To truly excel, it is imperative to op-
timize the application’s performance, ensuring that users
enjoy an exceptional and consistent experience. This is
particularly critical in an industry where even minor per-
formance issues can deter potential users or tarnish an ap-
plication’s reputation.

This article delves into the study of Flutter applications
with a particular focus on methods for their optimization.
The choice of this topic underscores the significance of
leveraging cutting-edge technologies to refine the soft-
ware development process. Among the various factors that
influence app performance, rendering efficiency stands

out as a critical component. Rendering is the process re-
sponsible for displaying interface elements on the screen,
and its optimization directly impacts the smoothness and
responsiveness of the application. Moreover, enhancing
rendering performance can significantly reduce a device's
energy consumption, leading to prolonged battery life - an
aspect highly valued by users.

Optimizing rendering processes addresses common
challenges such as delays and resource bottlenecks, which
can otherwise compromise the overall performance of an
application. Within this research, various strategies for im-
proving the user interface (UI) flow are explored. These
strategies focus on minimizing the computational load on
devices, ensuring applications remain both efficient and
visually appealing. By adopting such approaches, develop-
ers can craft applications that offer intuitive and seamless
interactions, meeting the high expectations of today’s us-
ers.

The study further systematizes methods for optimiz-
ing UI flow, offering practical recommendations tailored
to developers. These actionable insights provide a founda-
tion for enhancing application performance across diverse
projects. By implementing these techniques, developers
can not only elevate the quality of their current applica-
tions but also streamline their development processes,
achieving greater efficiency and effectiveness.

The findings and recommendations presented in this
article are invaluable for mobile application developers

Біоніка інтелекту. 2024. № 2 (101). С. 75–83	 хнуре

76

Koba Yu., Nazarov O., Nazarova N.

striving to optimize their projects. They highlight the impor-
tance of balancing performance with user-centric design,
paving the way for software that not only meets but exceeds
industry standards. Ultimately, this research contributes to
the broader field of mobile software development, present-
ing new avenues for innovation and excellence.

1. Why is performance important?

Performance in Flutter apps is crucial for several rea-
sons, as it directly impacts user experience, app adoption,
and long-term success.

Performance is the backbone of a great user experi-
ence, and Flutter apps are no exception. Users today are
accustomed to fast and fluid interactions in mobile apps,
and any deviation can lead to dissatisfaction [2]:

–– instant feedback: when users tap a button or scroll
through a list, they expect immediate feedback. A lag of
even a few milliseconds can make the app feel unrespon-
sive;

–– smooth scrolling and transitions: apps with janky
scrolling or choppy animations create a sense of poor
quality. Flutter is designed for fluid 60 FPS animations,
but without optimization, heavy UI elements or ineffi-
cient code can disrupt this;

–– perceived quality: high performance is often sub-
consciously associated with professionalism and trustwor-
thiness. A smooth app feels polished and reliable, while a
slow app can erode user confidence.

–– Retaining users is just as important as acquiring
them, and performance plays a critical role in this [3]:

–– avoiding frustration: studies show that even slight
performance issues can lead to users abandoning an app.
For instance, a 1-second delay in response time can de-
crease customer satisfaction by up to 16%;

–– positive feedback loop: users who enjoy a fast and
smooth app are more likely to leave positive reviews, rec-
ommend the app to others, and return for repeated usage;

–– gamified and real-time features: Flutter apps often
include interactive or real-time features like leaderboards,
chat systems, or live updates. These require robust perfor-
mance to maintain engagement.

–– The mobile app market is saturated, and competi-
tion is fierce. Performance optimization can be a key dif-
ferentiator [4]:

–– standing out from the crowd: with thousands of apps
vying for user attention, those that offer superior perfor-
mance are more likely to be noticed and retained;

–– App Store rankings: performance directly impacts
app ratings and reviews, which are critical for app store
visibility. Apps with poor performance often face negative
reviews and lower rankings, making them harder to dis-
cover.

Flutter is designed to create apps that work across a
wide range of devices and operating systems. Ensuring
good performance means your app remains accessible to
everyone, regardless of their hardware [5]:

–– support for low-end devices: not every user has ac-
cess to high-performance smartphones. Optimizing per-
formance ensures that users on older or less powerful de-
vices still get a good experience;

–– global reach: in many regions, low-end devices
dominate the market. A poorly optimized app could al-
ienate a significant portion of potential users.

–– High-performance apps often correlate directly
with better business outcomes:

–– increased conversion rates: for e-commerce apps,
performance issues can lead to cart abandonment. A
smooth checkout process ensures users complete their
transactions;

–– improved retention metrics: retained users are more
likely to make in-app purchases, subscribe to premium
features, or engage with ads, driving higher revenue;

–– lower cost of acquisition: satisfied users are more
likely to recommend the app, reducing the need for ex-
pensive user acquisition campaigns.

Performance isn’t just about speed - it’s also about ef-
ficiency [6]:

–– battery life: poorly optimized apps drain battery life,
frustrating users. Flutter developers must ensure efficient
use of resources like CPU and GPU to preserve device
power;

–– memory usage: apps that consume excessive mem-
ory can slow down the entire device or lead to crashes.
Efficient memory management is essential for a smooth
user experience;

–– data efficiency: apps that minimize unnecessary
network requests and efficiently compress or cache data
provide a better experience for users with limited data
plans.

–– As your app grows, its performance needs to scale
with it:

–– handling more users: apps that perform well under
stress - such as during a sudden influx of traffic - are more
likely to succeed. Poorly optimized apps may crash or
slow down during high usage;

–– adding features: a well-optimized codebase makes it
easier to add new features without significantly impact-
ing performance. Flutter’s modular architecture supports
this, but developers must implement best practices to
maintain scalability.

Flutter’s unique architecture offers many benefits, but
it also requires specific attention to performance [7]:

–– widget hierarchies: Flutter's declarative approach
relies heavily on widgets. Deep or overly complex widget
trees can slow down rendering. Developers need to op-
timize widget structures and use tools like the Flutter
DevTools profiler;

–– frame budget: Flutter aims for 60 FPS (or 120 FPS
on devices with high refresh rates), meaning each frame
must be rendered in under 16 milliseconds. Exceeding
this budget leads to dropped frames and visible lag;

77

Research on methods of optimizing flutter applications rendering using a linear regression model

–– Dart performance: Flutter uses Dart, which is fast
but requires careful management of asynchronous tasks,
memory allocation, and heavy computations to avoid
blocking the UI thread.

Building high-performance apps also reduces long-
term maintenance and operational costs [8]:

–– fewer bugs: optimized apps are often more stable,
leading to fewer user complaints and less time spent on
bug fixes;

–– reduced technical debt: addressing performance
early prevents the accumulation of inefficient code that
becomes harder to fix later;

–– infrastructure costs: efficient apps reduce server
load, bandwidth usage, and other infrastructure costs, es-
pecially important for apps with large-scale operations.

Lastly, performance isn’t just about technical metrics -
it’s about delighting users.

–– micro-interactions: small details like button anima-
tions, loading indicators, and page transitions can make
an app feel alive. Performance ensures these elements
flow seamlessly;

–– flow state: apps that perform well create a sense of
flow, where users remain engaged without being distracted
by lag or glitches.

Performance in Flutter apps isn’t just a technical con-
cern — it’s a fundamental aspect of delivering value to
users, growing your audience, and succeeding in a com-
petitive market. By prioritizing performance, developers
can ensure their Flutter apps stand out, delight users, and
drive long-term business success.

2. Productivity factors and methods
of their optimization

In the context of Flutter applications, performance is
primarily focused on two key indicators [9]:

–– rendering speed – the speed at which Flutter can
generate the pixels that make up the application interface
on the screen. Ideally, Flutter should render each frame
in approximately 16 milliseconds (ms) to achieve smooth
playback at 60 frames per second (FPS). This ensures a
seamless and responsive user interaction;

–– frames per second (FPS) – FPS indicates the num-
ber of times per second the application interface is updat-
ed and redrawn on the screen. A higher frame rate leads
to a smoother and more fluid user experience. Conversely,
a low frame rate can cause jerks, delays, and a sense of
sluggishness.

Ensuring optimal rendering speed and high frame rate
is critically important for achieving high performance and
user satisfaction in Flutter applications.

Several factors can influence the performance of a
Flutter application. Here are the main ones:

–– widget tree complexity: Flutter builds the applica-
tion interface using a widget hierarchy. A complex widget
tree with many nested elements may require more time to
render, which will impact performance;

–– widget reconstruction frequency: Flutter rebuilds
the entire widget subtree every time there is a change in
its state, even if the change affects only a small part of the
interface. This can become a performance bottleneck for
frequently updated widgets or those deeply nested in the
widget tree;

–– state management strategy: How the application
state is managed can significantly impact performance.
Improper state management practices can cause unneces-
sary widget rebuilds, leading to slowdowns;;

–– interface complexity: Visually complex interfaces
with rich animations, heavy layouts, or large images may
require more computational resources for rendering, po-
tentially affecting performance;;

–– device capabilities: Application performance will
also depend on the user's device. Devices with low com-
putational power, limited memory, or slow network con-
nections will experience application slowdowns.

Considering these factors, it is important to carefully
optimize a Flutter application to ensure the best perfor-
mance and user experience. For the research, the follow-
ing optimization methods can be highlighted:

–– avoiding unnecessary widget reconstruction;
–– using constant constructors;
–– minimizing the usage of Stateful widgets;
–– minimizing the length of build methods;
–– minimizing the usage of helper methods;;
–– rendering only widgets that are visible on the cur-

rent screen;
–– minimizing the use of opacity in widgets;
–– efficient usage of asynchronous functions and mul-

tithreading;
–– optimizing network requests;
–– data caching.

3. Selection of a linear model for evaluation
of optimization methods

To conduct a performance study of optimization
methods, a decision was made to build a mathematical
experiment model in the form of a linear model without
factor dependencies for several reasons [10], substanti-
ated by the specifics of rendering optimization methods
research in serverless Flutter applications:

–– independence of optimization methods: The pri-
mary reason for choosing a linear model is that each UI
layer rendering optimization method is applied separately,
and their effectiveness does not depend on each other.
This allows using a simple linear model where each factor
(optimization method) has its own impact on the result
(rendering time) without creating interdependencies be-
tween them. Thus, changing one method will not directly
affect the results of others, which allows building a model
without considering complex interactions;

–– simplification of experiment complexity: The linear
model is one of the simplest mathematical models that ef-
fectively evaluates individual factor influences without the

78

need to complicate the model with interdependent vari-
ables. Since the research focuses on comparing the effec-
tiveness of various optimization methods, the simplicity
of the linear model maintains analysis transparency and
reduces the possibility of errors in result interpretation;

–– measurement and comparison capability: For each
optimization method, the UI layer rendering time will be
measured in two scenarios: with and without optimiza-
tion techniques. The linear model allows for a clear com-
parison of these two variants for each method, evaluating
which method specifically impacts performance improve-
ment. Each method can be considered as a separate fac-
tor, the impact of which is measured independently of
other methods;

–– convenience for results analysis: Linear regression
allows for a clear assessment of each optimization meth-
od's contribution to the overall result. This provides an
opportunity to evaluate not only the total rendering time
but also quantitatively determine how much each meth-
od affects the application's performance. This approach
yields specific and intuitively understandable results that
are convenient for further analysis and decision-making
regarding the selection of the most effective methods;

–– minimizing the influence of random variables: A
linear model without dependencies between factors al-
lows minimizing the impact of random variables and data
noise. Since each method is evaluated separately, its effec-
tiveness can be measured more accurately without distort-
ing the results through method interactions, ensuring high
experimental reliability.

Given the aforementioned factors, the linear model is
an optimal choice for researching rendering optimization
method effectiveness, as it provides accuracy, simplicity,
and analysis convenience while minimizing experiment
complexity.

4. Software development for conducting research

For the research, a page was created that would dis-
play a list of items. The study will be conducted in this
environment, as lists are one of the most used ways of dis-
playing information in applications. Below is the code for
each of the optimization aspects defined above.

The aspect of “avoiding unnecessary widget re-render-
ing” involves avoiding additional calls to setState methods
and ViewModel updates. In this case, we will consider us-
ing the ignoreChange method (Fig. 1), which will block
re-rendering the page when it is not needed.

Fig. 1. Avoiding unnecessary widget re-rendering code

Constant constructors allow you to create immuta-

ble widgets. This allows Flutter to reuse them in memory

more efficiently, which reduces the cost of rendering and

object creation. The result is a reduced memory footprint

and improved performance. Below is the code (Fig. 2)

with and without constant widgets.

Fig. 2. Code with and without constant widgets

Stateful widgets are more expensive than Stateless

widgets because they have state that needs to be stored

and updated. Too many of these widgets can slow down

your application. Therefore, below (Fig. 3) are two cas-

es of rendering the same components using Stateful or

Stateless widgets.

The build methods are executed every time the widg-

et is redrawn. If the method is large and complex, it can

cause delays in the interface. The following is code using

the long and short build methods (Fig. 4).

Helper methods inside build often create new ob-

jects on each call, which impacts performance. Below is

the code using list building with methods and individual

widgets (Fig. 5).

Rendering elements that are not visible to the

user consumes device resources without any benefit.

Therefore, it is better to use ListView (or SliverList) than

SingleChildScrollView. The code for using both is given

below (Fig. 6).

Koba Yu., Nazarov O., Nazarova N.

79

Fig. 3. Two cases of rendering the same components

using Stateful or Stateless widgets

The Opacity widget adds a rendering layer, which
increases the load on the GPU. Using alternatives like
Colors.transparent or style management is more efficient.
The Visibility widget also relies on the Opacity widget.
Below is the code using this widget and an alternative
without it (Fig. 7).

Fig. 4. Code using the long and short build methods

Asynchrony and isolates allow you to perform re-
source-intensive tasks (data loading, calculations) outside
the main thread responsible for rendering the UI. Below
is a class that defines the dominant color of an image list
with and without the use of isolates (Fig. 8).

Improper request handling, such as redundant or fre-
quent calls, can overload the network and slow down the

application, and some independent calls can be made si-
multaneously. Below is how to use sequential and parallel
requests to the server (Fig. 9).

Caching reduces the number of recalculations and
data downloads from the network or database. Below is
an implementation of displaying avatars using a regular
widget and a widget that supports data caching (Fig. 10).

Research on methods of optimizing flutter applications rendering using a linear regression model

80

Fig. 5. Code using list building with methods

and individual widgets

Fig. 6. Code using SliverList and SingleChildScrollView

Following these recommendations allows you to create
fast, stable, and energy-efficient applications that provide
a positive user experience.

Fig. 7. Code with and without Opacity

Fig. 8. Code with and without isolates usage

Fig. 9. Sequential and parallel requests

Fig. 10. Regular widget and a widget
that supports data caching

Koba Yu., Nazarov O., Nazarova N.

81

5. Conducting an experimental study of selected rendering
optimization methods

5.1. Stage 1. A priori information analysis.

Let the following become known during the analysis of
a priori information about the software:

–– the software is a mobile application written in the
Dart programming language using the Flutter framework;

–– the software runs on a mobile device running the
Android or iOS operating system;

–– the software uses Supabase as a server..
We will use the mathematical model of the experiment

in the form of a linear model without dependencies be-
tween factors. The task is reduced to finding the values of
the coefficients ki of the regression equation.

y k k x k xn n� � ���0 1 1

The factors with the largest values will have the great-
est influence on the output characteristic.

5.2. Stage 2. Selection of influencing factors.

The impact factors are selected as a result of the analy-
sis of a priori information about the software (Table 1)

Table 1
Factors of influence

Factor Description

x1
Excessive widget processing

x2
Number of constant widgets

x3
Number of Stateful widgets

x4
Amount of build methods (in rows)

x5
Availability of helper methods

x6
Rendering of all widgets in the tree

x7
Number of widgets using Opacity

x8
Using isolates

x9
Number of parallel requests

x10
Caching pictures

5.3. �Stage 3. Selection of upper and lower levels
for factors.

We select the upper and lower levels for each fac-
tor (Table 2).

Table 2
Upper and lower values of influence factors.

Factor Upper value Lower value

x1
on off

x2
20 4

x3
20 2

x4
120 30

x5
on off

Factor Upper value Lower value

x6
on off

x7
20 0

x8
on off

x9
20 0

x10
on off

5.4. �Stage 4. Compilation of the matrix of planning
and conducting experiments.

Y is the time of loading and rendering of the table.
The matrix and the results of the experiment are shown
in Fig 11.

Fig. 11. Matrix of experiments and results

5.5. Stage 5. Analysis of results.
Using data analysis in Microsoft Excel, we will per-

form a regression analysis (Fig. 12).

Fig. 12. Regression analysis of research results

The main conclusions:
–– Multiple R: 0.9748 — strong correlation between

independent variables and dependent variable;
–– R Square: 0.9502 — model explains 95.02% of the

variation of the dependent variable;
–– Adjusted R Square: 0.9329 — the adjusted coeffi-

cient takes into account the number of variables and the
sample size;

–– Significance F: 3 715 10 16. * − (very low value) — the
model is statistically significant.

The coefficients of the regression equation can be
found as:

Research on methods of optimizing flutter applications rendering using a linear regression model

82

k
x y

N
j kj

i

N

ij i� ��� 1 1,

Table 3
Coefficients of the regression equation

k0
5,505615896

k1
0,077319531

k2
0,336867997

k3
0,445928093

k4
0,269740417

k5
0,273767726

k6
0,111107668

k7
0,157021809

k8
-1,912738248

k9
0,486456715

k10
-0,122151305

Regression equation:

Visualization of forecasting results is shown in Fig. 13.

Fig. 13. Prediction results

Analysis of the significance of variables (P-value):
а) statistically significant variables (P-value < 0.05):
1) x5 0 0445(.)P = ;
2) x6

52 09 10(.)P *� � :
These variables have a significant effect on the de-

pendent variable Y.
б) ariables with high P-value (P-value > 0.05):
1) x x x x x x x1 2 3 4 6 7 10, , , , , , .
Their influence is less significant and can be consid-

ered for exclusion from the model.
в) variable x8

192 16 10: (.)P *� � — a high influence,
but the coefficient is negative (-1.9127), which indicates a
strong decrease in Y with an increase in x8 .

Based on the given influencing factors and the results
of the regression analysis, it is possible to interpret the
values of the variables and their effect on the dependent
variable Y. Below is a more detailed analysis.

Key influencing factors:
а) x5 (availability of helper methods):

1) coefficient: 0.2737, P-value: 0.0445;
2) conclusion: the presence of helper methods nega-

tively affects the dependent variable; the impact is signifi-
cant, so it is not recommended to use helper methods for
optimization.

б) x8 (using isolates):
1) coefficient: –1.9127, P-value: very low (<0.001);
2) conclusion: the use of isolates has a very strong pos-

itive effect, allowing to reduce rendering time;
в) x9 (number of parallel requests):
1) coefficient: 0.48650, P-value: 0.0005.
2) conclusion: an increase in the number of parallel

requests significantly and positively affects the result; this
may mean that parallelism optimizes the execution time
of tasks.

Factors without significant influence:
x1 �(excessive widget recycling): no statistically signifi-

cant effect (P=0.5520);
x2 �(number of constant widgets): not significant

(P=0.1263);
x3 �(number of Stateful widgets): not significant

(P=0.8579);
x4 �(length of build methods): not significant

(P=0.1386);
x6 �(rendering of all widgets in a tree): not significant

(P=0.3210);
x7 �(number of widgets using Opacity): not significant

(P=0.1941);
x10 (image caching): not significant (P=0.2090).

Conclusion

In the competitive landscape of modern mobile tech-
nology, the optimization of Flutter applications is essen-
tial for delivering an exceptional user experience. This
study underscores the importance of rendering optimiza-
tion, highlighting its critical role in achieving smooth and
responsive user interfaces while minimizing energy con-
sumption. By systematically exploring various optimiza-
tion strategies, the research provides actionable insights
for developers aiming to enhance the performance of their
applications.

The findings reveal that certain practices significantly
influence the efficiency of Flutter applications. Notably,
the use of helper methods negatively impacts performance
and is not recommended as an optimization strategy due
to its adverse effects on rendering time. On the other hand,
employing isolates demonstrates a remarkably strong
positive effect, enabling a significant reduction in render-
ing time by offloading computationally intensive tasks to
separate threads. Additionally, increasing the number of
parallel requests emerges as a powerful technique, as it
enhances task execution efficiency and optimizes overall
application performance.

These insights emphasize the importance of thought-
ful and informed optimization practices. Developers are

Koba Yu., Nazarov O., Nazarova N.

83

encouraged to prioritize strategies like isolates and paral-
lelism while avoiding techniques that may inadvertently
hinder performance. By implementing these recommen-
dations, developers can create Flutter applications that
are not only visually appealing but also efficient and re-
source-friendly, catering to the high expectations of mod-
ern users.

In conclusion, this research provides a robust frame-
work for optimizing Flutter applications, paving the way
for superior software development. By adopting these
practices, developers can improve both the performance
and the user experience of their applications, ensuring
long-term success in the dynamic mobile technology
market.

References

[1]	 Bhagat, S. (2022). Review on Mobile Application Develop-
ment Based on Flutter Platform. International Journal for
Research in Applied Science and Engineering Technology.
https://doi.org/10.22214/ijraset.2022.39920.

[2]	 Białkowski, D., & Smolka, J. (2022). Evaluation of Flut-
ter framework time efficiency in context of user interface
tasks. Journal of Computer Sciences Institute. https://doi.
org/10.35784/jcsi.3007.

[3]	 Zuniga, A., Flores, H., Lagerspetz, E., Nurmi, P., Tarko-
ma, S., Hui, P., & Manner, J. (2019). Tortoise or Hare?
Quantifying the Effects of Performance on Mobile App
Retention. The World Wide Web Conference. https://doi.
org/10.1145/3308558.3313428.

[4]	 Hort, M., Kechagia, M., Sarro, F., & Harman, M. (2021). A
Survey of Performance Optimization for Mobile Applica-
tions. IEEE Transactions on Software Engineering, 48, 2879-
2904. https://doi.org/10.1109/TSE.2021.3071193.

[5]	 Biørn-Hansen, A., Grønli, T., & Ghinea, G. (2019). Animations
in Cross-Platform Mobile Applications: An Evaluation of
Tools, Metrics and Performance. Sensors (Basel, Switzerland),
19. https://doi.org/10.3390/s19092081.

[6]	 Nanavati, J., Patel, S., Patel, U., & Patel, A. (2024). Critical
Review and Fine-Tuning Performance of Flutter Applica-
tions. 2024 5th International Conference on Mobile Computing
and Sustainable Informatics (ICMCSI), 838-841. https://doi.
org/10.1109/ICMCSI61536.2024.00131.

[7]	 McKelvie, K., & Kanapesky, A. (2022). Architectural improve-
ments to increase reverberation and reduce flutter echo in two
music rehearsal rooms. The Journal of the Acoustical Society
of America. https://doi.org/10.1121/10.0015412.

[8]	 Lovrić, L., Fischer, M., Röderer, N., & Wünsch, A. (2023).
Evaluation of the Cross-Platform Framework Flutter Using
the Example of a Cancer Counselling App. , 135-142. https://
doi.org/10.5220/0011824500003476.

[9]	 Piskor, J., & Badurowicz, M. (2023). Performance com-
parison of Flutter platform GUI in web and native environ-
ments. Journal of Computer Sciences Institute. https://doi.
org/10.35784/jcsi.3677.

[10]	Williams, B. (2020). Identification of the linear factor
model. Econometric Reviews, 39, 109 - 92. https://doi.org/1
0.1080/07474938.2018.1550042.

The article was delivered to editorial stuff on the 14.11.2024

Research on methods of optimizing flutter applications rendering using a linear regression model

