
56

UDC 004.021:005.8 DOi 10.30837/ bi.2024.2(101).09

M. Rohovyi1, M. Grinchenko2

1NTU "KhPI", Kharkiv, Ukraine, nikrogovoy@gmail.com,
ORCID ID: 0000-0002-7902-3592

2NTU "KhPI", Kharkiv, Ukraine, marina.grynchenko@khpi.edu.ua,
ORCID ID: 0000-0002-8383-2675

COMPARATIVE ANALYSIS OF STABLE MATCHING ALGORITHMS
FOR INTELLIGENT WORK PLANNING OF IT TEAMS

The article is devoted to a comparative analysis of stable mapping algorithms for intelligent planning of work of
IT teams working according to agile development methodologies. The authors consider the problem of effective task
distribution between developers as a problem of finding stable mapping. The paper presents an overview of existing
approaches to task distribution in project teams and justifies the relevance of studying stable mapping algorithms in this
context. A research methodology is proposed, which includes the creation of a simulation environment for modeling
the task distribution process, synthetic data generation, implementation and evaluation of five key algorithms: SOSM,
EADAM, MESMA, RSD and TTC. The purpose of the study is to formulate recommendations for the implementation of
stable mapping algorithms for planning and task distribution in IT teams using agile project management methodologies.
According to the results of the experiments, the EADAM and SOSM algorithms are recommended for practical
application due to their balance of stability, efficiency and satisfaction of performers.

TASK DISTRIBUTION, STABLE COMPARISON ALGORITHMS, IT TEAM, FLEXIBLE DEVELOPMENT
METHODOLOGIES, PROJECT MANAGEMENT

Роговий М., Гринченко М. Порівняльний аналіз алгоритмів стабільного зіставлення для інтелектуального
планування роботи ІТ-команд. Стаття присвячена порівняльному аналізу алгоритмів стабільного зіставлення
для інтелектуального планування роботи ІТ-команд, що працюють за гнучкими методологіями розробки.
Автори розглядають проблему ефективного розподілу завдань між розробниками як задачу знаходження
стабільного зіставлення. у роботі представлено огляд існуючих підходів до розподілу завдань у проєктних
командах та обґрунтовано актуальність дослідження алгоритмів стабільного зіставлення в цьому контексті.
Запропоновано методологію дослідження, що включає створення симуляційного середовища для моделювання
процесу розподілу завдань, генерацію синтетичних даних, реалізацію та оцінку п'яти ключових алгоритмів:
SOSM, EADAM, MESMA, RSD та TTC. Метою дослідження є формування рекомендацій щодо імплементації
алгоритмів стабільного зіставлення для планування та розподілу задач в ІТ-командах, що використовують
гнучкі методології управління проєктами. За результатами проведених експериментів алгоритми EADAM
та SOSM рекомендовані для практичного застосування через їх баланс стабільності, ефективності та задо-
волення виконавців.

рОЗПОДІЛ ЗАВДАнЬ, АЛГОрИТМИ СТАБІЛЬнОГО ЗІСТАВЛеннЯ, ІТ-КОМАнДА, ГнуЧКІ Ме-
ТОДОЛОГІЇ рОЗрОБКИ, уПрАВЛІннЯ ПрОЄКТАМИ

Introduction

One of the most common approaches to managing
software development teams is the agile Scrum method-
ology. The team's work is usually organized in iterations
with weekly sprints. The team breaks down each task into
separate tasks, for which they estimate the time for com-
pletion. When assigning tasks to developers, it's important
to consider their skills and preferences. Effectively assign-
ing developers to tasks is a critical challenge in software
development teams. The goal is to assign tasks to develop-
ers in a way that maximizes productivity, ensures job satis-
faction, and maintains team stability.

The Scrum methodology regulates the distribution of
tasks based on the results of team discussions, consider-
ing the interests of the performers, the wishes of the man-
ager, and the priorities of the task for the project. As a
result, there is a risk of failure to complete or incorrectly
complete a task due to the choice of an inappropriate per-
former. In addition, if the task was assigned by the project
manager, but there are conflicts with the interests of the

performer, there is a risk of failure to complete the task

due to the emergence of another, higher priority from the

performer's point of view. This problem is similar to the

well-known stable matching problem, which is to find a

match between two sets of elements (e.g., developers and

tasks) such that there are no two elements that prefer each

other over their current choice.

So, in a general sense, the task allocation problem can

be viewed as the problem of forming stable pairs between

executors and sprint tasks. Previous research has studied

various aspects of task assignment and developer perfor-

mance. However, there is a gap in the application of stable

matching algorithms specifically tailored to the context of

IT teams, considering factors such as developer skills, task

complexity, and developer interests, which is important in

the context of agile project management methodologies.

This paper aims to fill this gap by conducting a compara-

tive analysis of several stable matching algorithms, evalu-

ating their effectiveness in different team scenarios.

Біоніка інтелекту. 2024. № 2 (101). С. 56–63 хнуре

57

CompArAtive AnAlysis of stAble mAtChing Algorithms for intelligent work plAnning of it teAms

1. Literature review

The task allocation is an important step in project
management, especially in agile methodologies. Effective
task distribution helps to optimize teamwork, increase
productivity, and ensure that tasks are completed on time.
Let's look at the existing approaches to the distribution of
tasks among project executors in the works of various re-
searchers.

The authors of the paper [1] propose an algorithm
for assigning employees to project work under conditions
of uncertainty, which considers the level of professional
competence of the staff and the qualification require-
ments for project tasks. They define the main parameters
of staff assessment, which include not only the available
knowledge and experience but also the personal qualities
of the employee. The researchers emphasize the impor-
tance of correlating the requirements for project tasks and
the qualifications of labor resources, which can contribute
to a more efficient distribution of tasks in the context of a
flexible IT project development methodology.

Paper [2] presents a decision support model using a
genetic algorithm for task allocation. The main entities
used are tasks, resources, goals, and various parameters.
Based on the genetic algorithm, a chromosome is formed
for double fragments, first information on the allocation
of resources to individual tasks and then information on
the allocation of time scales to a separate combination of
task resources.

In the work [3], researchers presented an approach to
supporting the distribution of tasks in distributed teams
using multicriteria decision analysis (MCDA). The study
is based on a real-world example where a multicriteria
model was created to support the distribution of work in
distributed teams. This work offers a structured approach
to solving the complex problem of task assignment in
globally distributed software development projects.

The authors of the paper [4] presented a method for
assigning tasks for crowdsourcing software in the con-
text of collaborative development. The authors proposed
an approach to task assignment in a crowdsourcing en-
vironment, which is a promising model of software de-
velopment. This work is aimed at solving the problem of
efficient task assignment in crowdsourced software devel-
opment projects, which is an important aspect for the suc-
cessful implementation of such projects. The results show
that the proposed method can increase the utility by about
25% and the average success rate by about 30% compared
to the sequential assignment method.

Three algorithms were proposed in [5] to solve the
problem of task distribution: GAN (Generative Adversarial
Networks) for text generation, decision-making data gen-
eration, and data function enhancement; Baum-Welch
algorithm for obtaining model parameters; and Viterbi
algorithm for obtaining an optimal task assignment strat-
egy. Based on these algorithms, efficient task allocation

strategies are created to maximize the total value of tasks
performed by employees.

An integrated artificial intelligence system [6] provides
dynamic data-driven optimization of resource and task al-
location to improve the productivity of software projects.
This system includes natural language processing (NLP),
reinforcement learning, and Bayesian networks. It gen-
erates task requirements from project documents, pre-
dicts the optimal resource allocation using reinforcement
learning, and validates the allocation using a Bayesian
network trained on past project data.

In [7], the authors propose an extended method and
algorithm by combining optimized flexible iteration
scheduling and the ability to predict and manage risks in
resource-limited Bayesian networks. Based on the meth-
od, software is developed as an auxiliary tool for managers
to control their project schedules. The tool also provides
a robust set of strategies for sequencing the task of flexible
iteration scheduling.

In the paper [8], the authors reviewed various ap-
proaches to task allocation adopted by agile software de-
velopment researchers in a quantitative manner. The table
shows a comparison of accepted task allocation applica-
tions along with their pros and cons. The study found that
most approaches to task allocation are quantitative, but
the qualitative aspect has not been considered to a large
extent during this process.

In order to develop a flexible and efficient model for
planning a software project, an event-based scheduling
(EBS) approach and ant colony optimization (ACO) al-
gorithm were developed in [9]. The proposed method al-
lows modeling resource conflicts and maintains flexibility
in the allocation of human resources. The results of 83
experiments demonstrate the prospects of the proposed
method.

A multi-criteria decision-making model for planning
and fine-tuning project plans [10] was developed using
cognitive mapping and MACBETH (measuring attrac-
tiveness using category-based evaluation technique). The
proposed model was based on the value judgments of de-
cision makers, which makes the model subjective.

In [11], the authors combined several factors used in
task assignment and determined their importance, allow-
ing them to establish a priority order among them. The
paper presents a hybrid methodology based on VDA tech-
niques to classify and organize the factors that guide the
assignment of tasks to distributed teams in software devel-
opment projects. Tasks were grouped according to their
type, requirements, architecture, implementation, and
testing. This method involves classifying and organizing
the factors that govern task assignment in a distributed
scenario.

The authors of [12] proposed a dynamic task assign-
ment algorithm (DUTA) and a dynamic crowdsourcing
software algorithm based on utilities. The Kuhn-Munkress

58

rohovyi m., grinchenko m.

method and the weighted bipartite graph algorithm are
used to determine the optimal match between tasks and
workers. Experimental results showed that DUTA gave
satisfactory performance results for the overall allocation
utility with a better task allocation success rate than the
user reliability-based algorithm. DUTA achieved an aver-
age allocation accuracy of 85.63%, which demonstrates
effective task management.

In [13], the authors propose a sprint planning decision
support system (SPESS), which is a tool to help manag-
ers plan sprints. SPESS uses poker for planning and the
Hungarian algorithm as a basis, and in addition to con-
sidering the experience factor, it considers the level of de-
veloper competence and task dependencies. The result is
comprehensive and accurate sprint planning for fast and
high-quality product delivery.

Paper [14] proposes an approach to task assignment
in a Scrum team using multi-agent modeling based on
p-values. The author has developed a task assignment al-
gorithm that uses p-values as a key factor in making deci-
sions about assigning tasks to agents. The p-value is seen
as a relative view of the agent and the task it is working
on. This approach allows you to effectively distribute tasks
in a Scrum team, considering the characteristics of agents
and the characteristics of tasks.

Researchers in [15] use mixed integer nonlinear pro-
gramming (MINLP) to plan a project and solve the prob-
lem of staff allocation with a time-dependent learning ef-
fect based on task similarity. The learning effect of a task
depends on the time when project staff start performing
that task. If project staff performs repetitive and/or similar
tasks, then these staff can gain experience and complete
tasks faster than planned. Thus, the sequence of tasks is
important to assign to project staff to minimize project
completion time while considering the similarity of tasks
in terms of learning.

The work [16] is aimed at building a goal tree, which
allowed to reflect the overall goal and subgoals that must
be ensured for the efficient allocation of resources. As a
mathematical model, a Boolean integer programming
problem was used, which with a sufficient degree of ad-
equacy was able to reflect the realities of project portfolio
formation in conjunction with the allocation of resources
between the relevant projects in the portfolio. The result
of the work was a prototype software that implements re-
source allocation modeling using the Balash method.

According to the results of the research published
in [17], a new approach to the development of an inte-
grated resource and task allocation optimization system
(RATAOS) using enterprise architecture is proposed to
improve the efficiency of project management in IT com-
panies. The main aspects of their research include integra-
tion of a project management information system (PMIS)
with an optimization system developed using a random
forest model and natural language processing (NLP).

Optimization of resource and task allocation resulted in a
14% reduction in operating costs and 88.7% reduction in
planning phases. The effectiveness of the proposed system
is demonstrated by a 50.80% reduction in project comple-
tion time [17].

The authors of [18] propose a comprehensive method-
ology for forming an IT project team based on solving a
multi-criteria distribution problem using metrics, sched-
uling, and calculating employee workload. Two team for-
mation templates are proposed: for a project and for a task
within a project. Such an integrated approach reduces the
time for forming a project team and eliminates the risk of
misassignment.

Thus, current research in the field of task allocation
in a project team shows a tendency to integrate various
approaches, including multi-criteria models, algorithmic
solutions, and artificial intelligence methods. These ap-
proaches are aimed at increasing the efficiency of project
management, optimizing the use of resources, and im-
proving the quality of project results.

The literature review reveals various approaches to task
allocation in project teams. However, not enough atten-
tion has been paid to the study of task allocation in a pro-
ject team based on the stable comparison problem. In our
opinion, such a study is important in terms of ensuring a
stable distribution, which is especially relevant for a scrum
team, balancing the distributed tasks between performers,
and optimizing resources, considering the interests and
competencies of team members.

2. Purpose and objectives of the study

The purpose of the study is to formulate recommenda-
tions for the implementation of stable matching algorithms
for planning and distributing tasks by the project team
when using flexible project management methodologies.

To achieve this goal, it is proposed to select stable
matching algorithms that have successfully proven them-
selves for solving problems in other subject areas; define
criteria for evaluating the effectiveness of algorithms; con-
duct experiments on model data and analyze the prospects
for implementing this task distribution formulation in a
project team that uses flexible management methodologies.

3. Research methodology

This section presents a methodology developed for
the comparative analysis of task allocation algorithms in
IT teams working with agile development methodologies.
Our study aims to evaluate the effectiveness of different
stable matching algorithms in the context of IT project
team scheduling.

The basis of the study is the creation of a simulation
environment that allows modeling the process of distrib-
uting tasks among developers, considering realistic condi-
tions and constraints typical of IT projects. We consider
five key algorithms: SOSM, EADAM, MESMA, RSD,

59

and TTC. The proposed approach includes generating
synthetic data that simulates developer and task profiles,
calculating compatibility metrics, building preference
lists, implementing algorithms, and evaluating them using
a number of metrics. This allows us to conduct a com-
prehensive analysis of the effectiveness of each algorithm
in different scenarios and conditions. This approach pro-
vides a solid basis for comparing algorithms and formulat-
ing recommendations for their application in real-world
IT projects.

3.1 Overview of algorithms

The Student-Optimal Stable Mechanism (SOSM)
algorithm is based on the Gale-Shapley deferred accept-
ance algorithm [19]. In this context, developers are con-
sidered as students who propose to tasks (schools) to form
a pair in the order of their preference lists. Each task also
has a list of preferred developers. The algorithm runs in
several rounds.

1. Proposal phase: developers rank the tasks according
to their preferences and each developer "offers" himself or
herself to the most preferred task.

2. Acceptance phase: Tasks have a prioritized list of
developers. Each task reviews the proposals and tempo-
rarily accepts the highest priority developer and rejects the
others.

3. Iteration: Rejected developers move on to the next
task on their list.

The process continues until all developers have been
assigned or rejected by all tasks. SOSM guarantees a sta-
ble matching that is optimal for developers, meaning that
no developer can get a better assignment without making
someone else worse off. This promotes fair distribution
and increases developer motivation.

The Efficiency-Adjusted Deferred Acceptance
Mechanism (EADAM) algorithm [20, 21], compared to
SOSM, strives to achieve Pareto-efficiency, but may vio-
late stability to improve efficiency. EADAM can lead to
better overall satisfaction of developers with their assign-
ments compared to SOSM. In the context of assigning
tasks to developers in IT projects, the EADAM algorithm
can be described as follows:

1. First, the standard deferred acceptance algorithm is
applied to obtain the initial allocation.

2. Interrupters are identified and eliminated iteratively
- these are pairs (developer, task) where a developer offers
himself to a task, causes another developer to be rejected,
but later gets rejected himself. As a result, no developer
can get a better assignment without making the situation
worse for the others.

3. Repeat the process until all interrupters are re-
moved.

EADAM strives to find a balance between efficiency
and fairness in task allocation, which can be useful in a
dynamic IT project environment.

The Maximally Efficient and Stable Matching
Algorithm (MESMA) [22] aims to find a stable distribu-
tion of tasks among developers with the maximum overall
weight (efficiency) and focuses on maximizing the overall
matching efficiency while ensuring stability. The inputs
are a system of developer preferences for tasks (and vice
versa) and a weighting function that determines the effi-
ciency of each possible assignment. MESMA uses a linear
programming approach to solve the problem of maximiz-
ing the weight of a stable match. However, the algorithm
can be computationally challenging for large projects, as
the maximum weighted stable matching problem is NP-
hard.

Random Serial Dictatorship (RSD) [23, 24] is a sim-
ple, strategically secure algorithm that assigns develop-
ers to tasks based on a randomly determined order. The
first developer in the sequence chooses the task that is of
the highest priority for him or her from the entire set of
available tasks. The second developer chooses his or her
highest priority task from the remaining ones. The process
continues until all developers have selected a task or until
the available tasks run out.

The advantage of RSD is strategic security, i.e., devel-
opers have no incentive to misrepresent their preferences.
RSD provides a simple and fair method of task allocation
but may require additional mechanisms to optimize the
efficiency of allocation in the context of IT projects.

The Top Trading Cycles (TTC) algorithm [25] also
allows optimizing the distribution of tasks based on the
wishes of developers, provides Pareto-efficient distribu-
tion, and is strategically safe. The algorithm works itera-
tively: each developer indicates the most preferred task
from the list of available ones. Cycles are formed where
developers point to each other through their preferred
tasks. For each identified cycle, tasks are exchanged be-
tween developers. Developers who participated in the ex-
change are removed from further consideration along with
their new tasks. The process is repeated for the remaining
developers until all developers have been assigned or there
are no more opportunities for exchange.

Thus, five algorithms were selected for the compara-
tive analysis, which allow optimizing the distribution of
tasks based on the wishes of developers, their qualifica-
tions, and preferences from the project's point of view.

3.2 Framework for modeling task distribution

To conduct experiments with the five matching al-
gorithms (SOSM, EADAM, MESMA, RSD, TTC), we
developed a comprehensive simulation framework that
models the process of task allocation in IT teams. Our
framework consists of the following key components:

– A synthetic data generator that creates realistic de-
veloper profiles with attributes such as skills, experience,
workload, and task characteristics (such as complexity,
priority, etc.).

CompArAtive AnAlysis of stAble mAtChing Algorithms for intelligent work plAnning of it teAms

60

– A compatibility calculation module that calculates
the compatibility score between each developer-task pair.

– Generator of preference lists for developers and
tasks.

– A module for implementing matching algorithms
that implements the five algorithms considered (SOSM,
EADAM, MESMA, RSD, TTC).

– Algorithm performance evaluation module. We
have chosen the following metrics to evaluate algorithms:

1. Total Compatibility Score (TCS), which is calcu-
lated as the sum of all compatibility values between as-
signed developers and tasks:

S C d ttotal
d t M

� � �
�
�

(,)

, ,

where M is a set of pairs (developer, task) in a matching,
C(d, t) is the compatibility score between the developer d
and the task t .

2. Number of blocking pairs (Blocking Pairs). The
pair (,)d t is considered to be a blocking pair if the de-
veloper d prefers the task t over his current assignment
and the task t prefers the developer d over its current
assignment. The number of blocking pairs is calculated as
follows:

B I t M d d M t
d t M

d t� �� �
� ��
�
,

(()) (()) ,

where I[]⋅ is an indicator function equal to 1 if the condition
is met and 0 otherwise, M d() is the task assigned to the
developer d M t, � � is the developer assigned to the task t .
t M dd � � means that the task t is more desirable for
the developer d than the one assigned to him, d M tt � �
means that the developer d is more desirable for the task
t than the one it was assigned.

3. Developer Satisfaction is defined as the average
rank of assigned tasks in the developer preference lists us-
ing the formula:

S
D

M d
d D

ddev rank� � �� �
�
�1

,

where D is the set of all developers, rank d M d_ (()) is the
position of the task t in the preference list of the developer
d , M d� � is the task assigned to the developer d .

The lower devS value means higher developer satisfac-
tion.

4. Execution time — the computational time required
by each algorithm to reach a solution.

The proposed framework allows conducting large-
scale experiments with different team and project config-
urations, providing an in-depth analysis of the effective-
ness of each algorithm in the context of task allocation in
IT projects.

4. Experimental research

We designed experiments to test the algorithms under
different conditions, focusing on the following variables:

– Team size: number of developers (small, medium,
large).

– Number of tasks varies with the size of the team to
simulate different workloads (light, moderate, heavy).

– Skill distribution: Developers have similar skill lev-
els (homogeneous) or developers have diverse skills (het-
erogeneous)

– Preference structure: correlated (preferences are
aligned with skills) or random (preferences are assigned
randomly).

We identified eight basic scenarios based on different
conditions in order to evaluate the scalability and perfor-
mance of the algorithms under different workloads. To
test the impact of agreed or random preferences on the
algorithms' results, we added the corresponding scenarios.

The scenarios are presented in tab. 1. It should be not-
ed that Scenario 5 focuses on the impact of task urgency.

Thus, we have formed the scenarios of experiments for
testing the selected algorithms using the developed frame-
work.

Table 1
Description of the experimental conditions

Experiment
Number

Name Team Size
Number
of Tasks

Skill
Distribution

Preference
Structure

1 Exp1_Small_Homogeneous_Light 5 5 homogeneous correlated

2 Exp2_Small_Heterogeneous_Light 5 5 random correlated

3 Exp3_Medium_Heterogeneous_Moderate 15 30 random correlated

4 Exp4_Medium_Homogeneous_Random 15 15 homogeneous random

5 Exp5_Sensitivity_Urgency 15 30 random correlated

6 Exp6_Large_Heterogeneous_Heavy 30 90 random correlated

7 Exp7_Large_Homogeneous_Random 30 30 homogeneous random

8 Exp8_Large_Heterogeneous_Moderate 30 30 random correlated

rohovyi m., grinchenko m.

61

5. Results and analysis

The results of the experiments conducted under the
defined scenarios are shown in tab. 2. Let's take a closer
look at the results for different algorithms and scenarios.
In terms of the overall compatibility score, the EADAM
and SOSM algorithms consistently achieved high overall
compatibility scores in all experiments, indicating effec-
tive comparisons. It is worth noting that MESMA slightly
outperformed EADAM and SOSM in terms of compat-
ibility, which is explained by the optimization orienta-
tion of the algorithm. Therefore, we can conclude that

EADAM and SOSM are effective in creating compari-
sons, while MESMA provides minor improvements due
to increased computational complexity.

In terms of stability (Blocking Pairs), EADAM and
SOSM provided stable matches with zero blocking pairs
in all scenarios, RSD did not guarantee stability, and TTC
resulted in a large number of blocking pairs, especially
in larger and more complex scenarios. It should be not-
ed that the MESMA algorithm did not explicitly report
blocking pairs, so it is difficult to compare it with other
algorithms by this indicator.

Table 2
Experimental results

Experiment Number Algorithm Total Compatibility Score Blocking Pairs Developer Satisfaction Runtime (s)

1

EADAM 4,30 0 3,00 0,0000

MESMA 4,30 0 3,00 0,0090

RSD 4,30 0 3,00 0,0000

SOSM 4,30 0 3,00 0,0000

TTC 4,30 4 3,00 0,0000

2

EADAM 3,22 0 1,74 0,0000

MESMA 3,42 0 1,85 0,0055

RSD 3,21 0 1,82 0,0000

SOSM 3,22 0 1,74 0,0000

TTC 2,58 2 2,17 0,0000

3

EADAM 14,43 0 4,34 0,0001

MESMA 14,53 0 4,57 0,4510

RSD 14,45 0 4,35 0,0000

SOSM 14,43 0 4,34 0,0001

TTC 8,13 17 10,29 0,0003

4

EADAM 13,00 0 7,42 0,0002

MESMA 13,00 0 7,42 0,3780

RSD 13,00 0 7,47 0,0000

SOSM 13,00 0 7,42 0,0001

TTC 13,00 52 7,99 0,0003

5

EADAM 14,43 0 4,34 0,0001

MESMA 14,53 0 4,57 0,4435

RSD 14,45 0 4,35 0,0000

SOSM 14,43 0 4,34 0,0001

TTC 8,13 17 10,29 0,0003

6

EADAM 30,76 0 8,34 0,0004

MESMA 30,84 0 9,00 19,9934

RSD 30,77 0 8,27 0,0000

SOSM 30,76 0 8,34 0,0002

TTC 18,53 87 27,37 0,0022

7

EADAM 26,04 0 14,16 0,0008

MESMA 26,04 0 14,16 6,7477

RSD 26,04 0 14,13 0,0001

SOSM 26,04 0 14,16 0,0004

TTC 26,04 222 15,57 0,0014

8

EADAM 23,59 0 7,76 0,0003

MESMA 24,49 0 8,38 1,9629

RSD 23,64 0 7,76 0,0000

SOSM 23,58 0 7,76 0,0002

TTC 18,81 92 10,25 0,0007

CompArAtive AnAlysis of stAble mAtChing Algorithms for intelligent work plAnning of it teAms

62

It can be concluded that stability is a significant issue
with TTC, making EADAM and SOSM preferable when
stability is critical. From the perspective of Developer
Satisfaction, algorithms that ensure stability also contrib-
ute to higher developer satisfaction.

The execution time of the algorithms is shown in
Fig. 1, where we can clearly see that MESMA has a signif-
icantly higher execution time, especially in experiments
with large teams (almost 20 seconds in Experiment 6),
which is explained by its computational complexity.

Fig. 1. Time of execution

Regarding the other algorithms, we can note that
EADAM and SOSM were highly efficient, with execution
times ranging from microseconds to milliseconds (tab. 2),
RSD was the fastest algorithm due to its simplicity, and
TTC had an average execution time that increased with
the size of the problem. Therefore, while MESMA may
offer minor performance improvements, its computational
cost may not justify its use in time-sensitive environments.

The results are summarized in Fig. 2. The EADAM and
SOSM algorithms provided stable and efficient matching.
At the same time, TTC instability became clearer with in-
creasing team size, with a significant increase in blocking
pairs and lower compatibility scores, and MESMA's runt-
ime increased, raising scalability concerns.

Fig. 2. Comparative analysis

In the fourth and seventh scenarios (homogene-
ous skills, random preferences), all algorithms achieved
similar compatibility scores. TTC showed limitations in
complex scenarios, even with homogeneous skills, the

preference structure affects its stability.
Thus, based on the results of the experiments, EADAM

and SOSM are recommended for practical use because
of their balance of stability, efficiency, and satisfaction.
Despite its minor advantages, MESMA has certain com-
putational requirements that limit its practical applica-
tion. TTC's instability and lower satisfaction levels make it
less suitable, especially in heterogeneous and larger teams.
The lack of stability of RSD is a critical drawback despite
its simplicity and speed.

6. Discussion and conclusions

Agile software development requires effective organi-
zational decisions during the execution of project tasks.
Successful task assignment is a challenging management
problem in agile software development.

Task assignment decisions are critical to the success of
agile teams, but they are not well understood. Traditional
survey-based methods limit the scope and level of detail of
data collection. Quality, productivity, and motivation are
negatively impacted by a lack of transparency and lack of
justification for the form of task assignment.

An analysis of different approaches to task distribution
allows us to identify current trends in task distribution
among project executors, overcome uncertainties, and
improve overall project efficiency. In studies [1, 13], the
distribution is based on competencies. The authors con-
sider solving this problem by aligning project tasks with
the qualifications and competencies of team members.
In [2, 9], genetic algorithms are also used to distribute
tasks among project executors. These approaches effec-
tively resolve resource conflicts and optimize planning by
modeling different scenarios and finding optimal solu-
tions. Studies [4, 12] utilize the potential of crowdsourc-
ing and distributed teams. The proposed models consider
employee activity, task complexity, and dependencies be-
tween modules to increase the efficiency of cooperation.
These approaches demonstrate significant improvements
in resource utilization and task completion speed.

Papers [5, 6, 7, 17] use artificial intelligence and ma-
chine learning methods. The use of multi-criteria models
[3, 10, 18] provides a structured approach to task alloca-
tion. By evaluating several factors simultaneously, these
models ensure balanced decision-making and integrate
qualitative and quantitative metrics. Proposed integrat-
ed systems for task optimization [15, 18] emphasize the
importance of combining task distribution with resource
optimization. Such systems reduce operating costs and
shorten planning time, accelerating the delivery of project
results.

The reviewed studies emphasize the multifaceted na-
ture of task distribution in Agile project management. The
comparative study emphasizes the importance of choosing
appropriate stable matching algorithms for task assign-
ment in IT teams. The EADAM and SOSM algorithms

rohovyi m., grinchenko m.

63

prove to be the most effective, consistently providing sta-
ble and efficient mappings with high developer satisfac-
tion and low computational costs.

Possible directions for further research could be to
integrate with real data and validate the results using ac-
tual team and task data. In the direction of improving the
algorithms, multitasking assignments and dynamic team
environments should be considered. Consideration of ad-
ditional factors such as fairness, workload balance, and
long-term impact on team performance also need to be
explored in more depth.

List of references:

[1] Myroslava Gladka, Olga Kravchenko, Yaroslav Hladkyi,
Sholpan Borashova. Qualification and appointment of staff for
project work in implementing IT systems under conditions of
uncertainty // Proc. of 2021 IEEE International Conference
on Smart Information Systems and Technologies, Astana IT
University, Nur-Sultan, Kazakhstan. – 2021. – P. 28-30.

[2] Fernandez J., Basavaraju M. Task allocation model in glob-
ally distributed software projects using genetic algorithms //
Proc. of the 2012 IEEE Seventh International Conference
on Global Software Engineering. – 2012. – P. 181.

[3] Barcus A., Montibeller G. Supporting the allocation of
software development work in distributed teams with mul-
ticriteria decision analysis // Omega. – 2008. – V. 36. –
№ 3. – P. 464-475.

[4] Yu D., Zhou Z., Wang Y. Crowdsourcing software task as-
signment method for collaborative development // IEEE
Access. – 2019. – V. 7. – P. 35743-35754.

[5] Yin X., Huang J., He W., Guo W., Yu H., Cui L. Group task al-
location approach for heterogeneous software crowdsourcing
tasks // Peer-to-Peer Networking and Applications. – 2020.
14. – № 3. – P. 1736-1747.

[6] Nakra V. Enhancing Software Project Management and Task
Allocation with AI and Machine Learning // International
Journal on Recent and Innovative Trends in Computing
and Communication. – 2023. 11. – № 11. – P. 1171-1178.

[7] Tuan N. N., Hang H. Q. Iteration Scheduling Using Bayes-
ian Networks in Agile Software Development // Proc. of
Vietnamese Academic Workshop. – 2019. – P. 300-308.

[8] Singh M., Chauhan N., Popli R. A Review on Quantitative
Task Allocation in Agile Software Development // Proc.
of International Conference on Sustainable Computing in
Science, Technology and Management (SUSCOM), Amity
University Rajasthan, Jaipur. – 2019. – P. 268-273.

[9] Chen W. N., Zhang J., Member S. Ant colony optimiza-
tion for software project scheduling and staffing with an
event-based scheduler // IEEE Transactions on Software
Engineering. – 2013. 39. – № 1. – P. 1-17.

[10] Almeida L. H., Albuquerque A. B., Pinheiro P. R. A multi-
criteria model for planning and fine-tuning distributed Scrum
projects // Proc. of 2011 IEEE Sixth International Confer-
ence on Global Software Engineering. – 2011. – P. 75-83.

[11] Simão Filho M., Pinheiro P. R., Albuquerque A. B. Analysis
of task allocation in distributed software development through
a hybrid methodology of verbal decision analysis // Journal
of Software: Evolution and Process. – 2017. – V. 29. –
№ 7. – P. 1-18

[12] Yu D., Wang Y., Zhou Z. Software crowdsourcing task al-
location algorithm based on dynamic utility // IEEE Access.
– 2019. – V. 7. – P. 33094-33106.

[13] Alhazmi A., Huang S. A decision support system for sprint
planning in scrum practice // Proc. of SoutheastCon. –
2018. – P. 1-9.

[14] Wang Z. P-value based task allocation in a scrum team: a
multi-agent simulation // Proc. of the IEEE 10th Inter-
national Conference on Software Engineering and Service
Science (ICSESS). – 2019. – P. 1-4.

[15] Arık O. A. Project scheduling and staff allocation problem
with time-dependent learning effect: a mixed integer non-
linear programming approach // A – Applied Sciences and
Engineering. – 2019.

[16] Vasyluk A., Basyuk T. Algebras of algorithms for modeling
the distribution of resources in IT projects // SISN. – 2023.
– V. 13. – P. 156-166.

[17] Pratama I. N., Dachyar M., Pratama N. R. Optimization
of Resource Allocation and Task Allocation with Project
Management Information Systems in Information Tech-
nology Companies // TEM Journal. – 2023. 12. – № 3. –
P. 1814-1824.

[18] Nechvoloda L. V., Shevchenko N. Yu. Increasing the ef-
ficiency of IT project management with the application of
complex methodology distribution of performers for work
// Taurida Scientific Herald. Series: Technical Sciences. –
2023. – No. 2. – P. 98-105.

[19] Diebold F., Aziz H., Bichler M., et al. Course Allocation
via Stable Matching // Bus Inf Syst Eng. – 2014. – V. 6. –
P. 97-110.

[20] Jiao Z., Shen Z. School choice with priority-based affirma-
tive action: A responsive solution // Journal of Mathematical
Economics. – 2021. – V. 92. – P. 1-9.

[21] Jiao Z., Tian G. Two further impossibility results on responsive
affirmative action in school choice // Economics Letters. –
2018. – V. 166. – P. 60-62.

[22] Diebold F., Bichler M. Matching with indifferences:
A comparison of algorithms in the context of course allocation
// European Journal of Operational Research. – 2017. –
V. 260. – № 1. – P. 268-282.

[23] Brandt F., Greger M., Romen R. Towards a Characterization
of Random Serial Dictatorship // arXiv. – 2023.

[24] Aziz H., Brandt F., Brill M. The computational complexity
of random serial dictatorship // Economics Letters. – 2013.
121. – № 3. – P. 341-345.

[25] Hong M., Park J. Core and top trading cycles in a market with
indivisible goods and externalities // Journal of Mathematical
Economics. – 2022. – V. 100. – P. 102627.

The article was delivered to editorial stuff on the 18.12.2024

CompArAtive AnAlysis of stAble mAtChing Algorithms for intelligent work plAnning of it teAms

