
20

АлгебрАизАция логики. рАспозНАвАНие и сиНтез речи

UDC 004.8 DOi 10.30837/ bi.2021.2(97).03

Yana Daniiel1, Kostiantyn Onyshchenko2, N. Kameniuk3

1Assistant of the Department of Software engineering,
Kharkiv National university of Radio electronics, Kharkiv, Ukraine,

yana.daniiel@nure.ua, ORCID ID: 0000-0002-3895-0744
2Assistant of the Department of Software engineering,

Kharkiv National university of Radio electronics, Kharkiv, Ukraine,
kostiantyn.onyshchenko@nure.ua, ORCID ID: 0000-0002-7746-4570

3Master’s student of Riga Technical University, Latvia, nataliia.kameniuk@gmail.com

USAGE OF LSTM MODELS FOR NATURAL LANGUAGE UNDERSTANDING

The problem of emotion classification is a complex task of language interpretation. In this work, a number of exist-
ing solutions for emotional classification problem were considered. The evaluation of performance of the considered
models was conducted. The model for emotion classification in three-sentence conversations is proposed in this work.
The model is based on smileys and word embeddings with domain specificity in state of art conversations on the Internet.
The model performance is evaluated and compared with language processing model BERT. The proposed model is better
at classifying emotions than BERT (F1 78 versus 75). However, modern performance of models for language representa-
tion did not achieve the human performance due to the complexity of natural language. There is a variety of factors to
consider when choosing the word embeddings and training methods to design the model architecture.

NATURAL LANGUAGE PROCESSING, NEURAL NETWORK, NATURAL LANGUAGE

Данієль Я.Д., Онищенко К.Г., Каменюк Н. Використання LSTM-моделей для обробки природної мови. Про-
блема класифікації емоцій є однією із важливих завдань інтерпретації мови. У даній роботі було розглянуто ряд
існуючих рішень проблеми емоційної класифікації. Проведено оцінку продуктивності розглянутих моделей.
Запропоновано модель класифікації емоцій у розмовах із трьох речень. Модель заснована на смайлах і викорис-
танням слів із оглядом на специфіку сучасного спілкування в в Інтернеті. Продуктивність моделі оцінюється
та порівнюється з моделлю обробки мови BERT. Запропонована модель краще класифікує емоції, ніж BERT
(F1 78 проти 75). Однак, сучасне виконання моделей мовного представлення не досягло продуктивності лю-
дини через складність природної мови. Існує ряд факторів, які слід враховувати при виборі вбудовування слів
і методів навчання для проектування архітектури моделі.

ОБРОБКА ПРИРОДНОЇ МОВИ, НЕЙРОННА МЕРЕЖА, ПРИРОДНА МОВА

Даниель Я.Д., Онищенко К.Г., Каменюк Н. Использование LSTM-моделей для обработки есстественного языка.
Проблема классификации эмоций является одной из важнейших задач интерпретации языка. В данной работе
был рассмотрен ряд существующих решений проблемы эмоциональной классификации. Проведена оценка
производительности рассматриваемых моделей. Предложена модель классификации эмоций в разговорах из
трех предложений. Модель основана на смайлах и использованием слов с учетом специфики современного
общения в Интернете. Производительность модели оценивается и сравнивается с моделью обработки языка
BERT. Предлагаемая модель лучше классифицирует эмоции, чем BERT (F1 78 против 75). Однако, современ-
ное исполнение моделей речевого представления не достигло производительности человека из-за сложности
естественной речи. Есть ряд факторов, которые следует учитывать при выборе встраивания слов и методов
обучения для проектирования архитектуры модели.

ОБРАБОТКА ПРИРОДНОГО ЯЗЫКА, НЕЙРОННАЯ СЕТЬ, ПРИРОДНЫЙ ЯЗЫК

Introduction

Over the past few decades, the amount of text data
produced by humanity has grown exceedingly. One of the
reasons behind this fact is that we actively exchange infor-
mation and publish our thoughts on websites and social
media.

Such unstructured data is represented in arbitrary
form and is often complemented by emojis, which makes
it difficult for a computer to categorize and derive mean-
ing from the source. On this basis, the challenge to teach
computers to properly process this information arose.

Natural language processing (NLP) is widely used for
text data analysis and classification [11].

The core aspects of language understanding include
three parameters, which are morphology, semantics, and

syntax. Morphology is the study of word or statement struc-
ture; semantics is the study of meaning, reference, or truth;
syntax is the study of how words and morphemes combine
to form larger units such as phrases and sentences [3].

Modern models consider all three parameters. The
models are using data-driven approach through machine
learning and deep learning.

The goal of this work is to consider existing solutions
for text data processing in terms of emotional classifica-
tion and propose the model that can solve such task.

1. Problem statement

The semantic evaluation problem of emotion classifi-
cation will be considered in this work. The deep learning
approach will be based on Keras and TensorFlow – the

21

Python frameworks. These frameworks have ready to use
functions for rapid optimization, model prediction, mod-
el tuning and many more. This will allow to achieve ap-
proximate state of the art results with an original model
architecture. BERT will also be implemented to obtain a
current state of the art model in natural language under-
standing. The received results will be evaluated and com-
pared [4].

The theoretical fundamentals of emotional classifica-
tion models will be discussed. The practical details of the
proposed model’s training and BERT on unseen test data
will be presented. The obtained results will be evaluated
and compared. The differences between the models will
be illustrated.

It should be considered that the proposed model will
be implemented based on Keras and TensorFlow. The
learned models will be applied to a specific pre-defined
dataset to solve the semantic evaluation problem of emo-
tion classification. The models will be trained on four
CPU cores. These conditions apply specific limitations
on the scope of the project.

2. Analysis of existing solutions

1) Machine Learning
Machine learning is a modelling approach focused

on finding underlying patterns in a dataset. An algorithm
with learning function is applied to rich dataset. The pa-
rameters of model are modified to enhance the predic-
tive performance of a model. The unseen data is used to
evaluate the trained model.

a) 3.1.1 RNN
Recurrent Neural Network (RNN) is a class of arti-

ficial neural networks, where connections between nodes
form a directed sequential graph. By this, the sequential
nature of input can be considered when making output
predictions [12].

A set of feedback weights contained in a hidden state
vector is computed at every step in the sequence that pass
information from earlier time points. The ability to pre-
dict to which class the sequence belongs to is provided by
the model reformulation. This will allow to incorporate
new time dependency by using the final recurrent hidden
state vector to make softmax probability predictions.

y Vhp= ()ϕ , (1)
where

 h Ux Whp p p= +()− .σ 1 (2)

The parametrization W of the model is comprised of
the weight matrices U, V and W. The hidden layer is de-
pendent on earlier states.

The Fig. 1 provides more information about the recur-
rence mechanism applied.

New hidden state vector is computed at each time step.
The vector is trained to pass forward the most significant
information for solving the problem through gradient de-
scent with an appropriate loss function [12].

Fig. 1. The unfolding concept

b) LSTM
Long Short-Term Memory (LSTM) networks have

two enhancements comparing to previously considered
RNNs. The first enhancement is that each time step
passes a hidden state vector and a local context vector to
the next recurrent node. The second enhancement is that
long short-term memory network contains a set of gating
mechanisms (Fig. 2). These mechanisms provide the abil-
ity to the model to decide which data to pass forward in
recurrence. These enhancements allow the LSTM model
to learn long-term dependencies in the sequence more
stably.

The gating mechanisms of LSTM contain an input
gate, a context gate, forgetting gate and an output gate,
which are activated matrix manipulations. The manipu-
lations are based on gating weights optimally learned
through training. The following relationships define the
gates and their associated weights [1].

 fp =σ(xpU
f +hp–1W f), (3)

 ip =σ(xpU
i +hp–1W i), (4)

 op =σ(xpU
o +hp–1W o), (5)

The functions are recurrent to hidden state of the pre-
vious time step and the current input data at this time.

A candidate c~
p for the context state c~

p is computed by

 c~
p = tanh(xpU

c + hp–1W с). (6)

The previous context information filtered by the for-
getting gate and present information from input gate in an
equation filtered through the context gate form the con-
text state.

The gating machinery provides an ability to determine
which long-term and short-term data to filter and pass to
the final output representation [10].

The hidden state representation of the sequence hp-1 is
computed as a combination of the filtered output from the
output gate and current context information.

 hp = op tanh(cp). (7)

The received output state can be used for prediction.
This output can be used in the same way as the hidden
states were used in RNN architecture equation (1) con-
sidered earlier.

On this basis, LSTM can represent complex sequences
and make stable predictions.

БИОНИКА ИНТЕЛЛЕКТА. 2021. № 2 (97). С. 20–26 хНурэ

22

Yana Daniiel, Kostiantyn Onyshchenko, N. Kameniuk

Fig. 2. The LSTM node

с) Bidirectionality
It should be considered that not all words can be pre-

dicted by the words before them.
In the sequences like “bow tie” and “bow ring”,

“bow” is contextually dependent both on the word se-
quences before and after them. This is a challenge for
regular recurrent networks. The solution for this challenge
is bidirectionality, which means reversing direction of the
sequence and feeding it to network. Both resulting hidden
states are concatenated, which is a standard practice for
many language models [10].

In Fig. 3, the simple RNN from Fig. 1 is extended to
work bidirectionally.

The states h in Fig. 3 can be from regular nodes or
LSTM. The network with the reverted states is a copy
from the original network. The resulting hidden states are
concatenated into form

 hp =(h→p, h1
←) (8)

The final hidden state vector can be used in the same
way as for RNN through equation (8). The bidirection-
al models can be modelled by doubling the number of
weights. This method is often applied to improve model
representation and predictions due to its ability to add
contextual information to language models [5].

2) Vector Representation of Language
Machine Learning models represented above have

real valued vectors xi. The language is represented as vec-
tors which is an essential step in using neural networks as
emotional classifiers. The words w are gathered in a vo-
cabulary to form the bag of words [2].

Fig. 3. Bi-directional RNN

 V = {wi : i ∈ 1, ..., N} (8)

The phrase is divided into one-word hot vectors, which
do not provide any extra information about the context.
The vectors are also computationally hard to use as a sin-
gle vector is a single word.

а) Word Embeddings
A more efficient solution is to pass a lower dimen-

sional vector xi ∈Rd (d<N) which also contains language
information about the word wi. Less computational pow-
er is required to process such vector by a classificational
model. This vector contains more language information
than one-word hot vector. This type of lower dimensional
representation is called word embedding.

Statistical language modelling is the other language
feature. The words are used in conjunction with each oth-
er. This can get a lot of information about the semantic
and syntactical use of a word through the context [9].

Principal Component Analysis (PCA) is a classic di-
mensional reduction technique, which is based on singu-
lar value decomposition of the co-occurrence matrix. This
approach is does not need linguistic rules to be fed to the
system, which makes it unsupervised. It considers the text
corpus in a whole, in different context, which also makes
it computationally expensive.

This can be solved by using a feed forward neural net-
work to predict the n-gram probabilities of the words in
the vocabulary given the context that came before [9].

Trainable d-dimensional random initialized vector
represents each word and n previous words are used as a
context. These vectors are concatenated and fed through
several hidden layers. The output layer is a softmax prob-
ability over the vocabulary of all the probabilities to meet
each word by the context words. The network is learning

23

USAGE OF LSTM MODELS FOR NATURAL LANGUAGE UNDERSTANDING

linguistically valuable information in the matrix of d-di-
mensional vectors while training to predict n-grams.

On this basis, words embedding can be used as the
sole input to other machine learning models for real NLP
tasks, such as machine translation, and semantic sentence
parsing. The Fig.4 illustrates a scheme of such feed for-
ward neural network.

Fig. 4. Bi-directional RNN

It should be considered that this model is expensive
to train. To increase the context window for the network
to learn, there is a need to increase the number of input
nodes, and the task of emotional classification requires a
lot of context.

3) GloVe
The skip-gram model is another proposed RNN ap-

proach which is efficient on smaller datasets with better
context information. RNNs efficiently model rich context
information due to the fact they have a sequence memory
of the previously met words. The model starts with the
opposite probability comparing to the n-gram prediction,
because this is the probability of different context words.
The basis of this probability is a target word [6].

GloVe is the other unsupervised learning algorithm for
obtaining vector representations for words. The difference
of GloVe from the skip-gram and feed forward word em-
bedding is the fact that GloVe is trained on a loss function.
The loss function considers both local co-occurrences
from the n-length context windows and global count-
based co-occurrence probabilities from the text corpus.
This allows to encode more of the language features com-
paring to PCA. This ability is provided since including
only local context information does not give enough in-
formation to features about the frequency the words occur
in rare contexts [7]. The loss function has slightly richer
context information embedded in the vectors comparing
to skip-gram model.

4) BERT
Pre-trained word embeddings in language are easy

to use and flexible. Their drawback is that one vector
can represent only one word. This means homonyms or
phrasal verbs, like ‘key’ or ‘get’ lose their language infor-
mation. This can be mitigated by using RNN or LSTM to
carry information over sequences to create a context for a
single word, but these networks cannot provide rich con-
text data to predict context-heavy language constructions.

One of the proposed approaches to solve this is-
sue is BERT (Bi-Directional Representations from
Transformers). In its core, the transformer relies on at-
tention for its representation to improve the contextual
awareness [2].

The weighted representation of all hidden state vectors
is trained at the same time with the recurrence relation-
ships. This allows the network to be aware of the previous
hidden states and do not rely solely on the final hidden
state representation when making predictions.

The transformers apply attention to underlying word
vectors from the original sequence to extract relevant lan-
guage features. This is called text encoding. Since trans-
formers do not use any recurrent relations, this allows to
conduct training in parallel [2].

On this basis, BERT model is applicable to solve NLP
tasks. BERT pre-trained weights can be downloaded via
the Internet and used for transfer learning. This will allow
to compare BERT with the other models in the task of
emotion classification.

а) Structure of the model
BERT is a sequence-to-sequence language represen-

tation model, which is efficient for NLP tasks solution.
A sequence of language information X = (I0, . . . , In) as
inputs and outputs a contextualized vector representation
H = (h0, . . . , hn) of the elements of the input sequence.

During the pre-processing phase, the model splits
words into word-parts. The placeholder tags are inserted
before the sequence and after sentences, however this
does not allow input vectors to directly correspond to the
underlying words in the sequence.

Due to the design of BERT model, the output pre-
sentation h0 becomes a distributed representation of the
underlying sequence. This sequence is similar to the final
hidden state of RNN. A classification model can be ob-
tained when adding an extra hidden layer to the BERT
model and activating this model with a softmax function
[11].

y Vh= ()ϕ 0
 (9)

Encoders, which are stacking nodes, are the other part
of this language representation framework. Encoders are
used to create encoded text representation (Fig. 5).

Every encoder layer abstracts language patterns from
an input sequence. It allows to form more complicated
patterns as the information flows up the layers. The first
encoder layer L receives language inputs and the last

24

encoder layer outputs the final encoded language infor-
mation [11].

H1 =Encoder(X)
… (10)

HL = Encoder (HL–1)

Fig. 5. Layers of the model

The first vector H of the final H representation is the
basis for classification task. Two sub-processes form each
encoder layer. As the first step, the inputs to the encoder
are passed through a multi-head self-attention layer. This
layer uses a series of matrix manipulations to extract lan-
guage information from the data inputs. The definition of
this process is multi-head self-attention (Fig. 6).

Fig. 6. The encoder dissection

The second sub-layer receives the outputs of the first
layer after these outputs are residually connected and nor-
malized. The second sub-layer retrieves the most valuable
information from the attention layer. This data is residual-
ly connected and normalized again. After this, the outputs
are sent onwards to the following encoder layer.

3. Theoretical propositions

This section is dedicated to proposition of a model for
classifying the last phrase of three-turn conversations into
any of pre-defined emotions. These emotions are Happy,
Angry, Sad and Others. The context is defined by previous
two sentences. The datasets are classified beforehand by
the emotion they represent, since model training should
be performed on high-quality data.

This task is solved by creation of neural network ar-
chitecture. BERT is used as a state of art language

representation model. The proposed model and BERT are
compared in terms of their performance on the problem.

Table 1
Data sample

id Turn 1 Turn 2 Turn 3

112 It’s cool meme Ha-ha, yes Happy

154
I don’t think it
is a good idea

You better
think twice

No, I
won’t!

Angry

186

In my
hometown

there are many
chestnuts

Where is it? In Kyiv Others

The pre-processing is divided into two steps. The first
one is data cleaning, which stands for defining and fixing
data irregularities. The second one is tokenization, which
stands for mathematical mapping of text data into a suit-
able input for classification models.

Data cleaning provides an ability to clarify meaning in
the text and boost the coverage. Coverage is measured by
pre-trained embeddings as the number of words for which
pre-trained embeddings exist divided by the total amount
of unique words in the problem. Since our dictionary is
problem dependent and GloVe embedding matrix is gen-
eralizable, it is not certain that the embedding matrix has
a vector representation of a given word. Thus, data clean-
ing is recurrently applied to boost coverage.

In our problem, data cleaning is used to transform
abbreviations into their initial state and replace symbol
emojis with Unicode emojis. This allows to improve sen-
tence representation in terms of meaning.

After data cleaning, tokenization is applied. The words
are vectorized and prepared for passing into classification
models. The words are separated and mapped to unique
numbers to decode them later. Keras, which is used to
solve the problem, has this functionality built into the li-
brary.

As a result, tokenized texts are mapped with embed-
ding matrices which represents the sequences in vector
space. The vector represented sequences are passed to
LSTM models. The input must all be of equal length to
allow to train the model weights to recognize features at
the same places in different sequences. To solve this, the
vectors are zero padded to the same length, which is con-
strained to 100 words per sentence.

The Figure 7 illustrates the word length distribution is
the training data.

Each sentence in a conversation is a matrix with ele-
ments of padded vectors representing the sentences. The
corresponding labels are one-hot vectors. The index of the
element 2 represents what emotion the training example
is connected to. The indexes are as follows: 0 – Angry,
1 – Sad, 2 – Happy, 3 – Others. The dataset is ready for
processing.

Yana Daniiel, Kostiantyn Onyshchenko, N. Kameniuk

25

Fig. 7. Word lengths per sentence

1) Proposed model
The proposed model (Fig. 8) is built as follows. The

standard LSTM outputs straight to a prediction layer
and is filtered through a softmax function. The result is a
probability vector. We use GloVe embeddings, trained on
text corpus represented by Wikipedia data. The word em-
beddings of dimension 100 and LSTM layer of dimension
128 with built in dropout are used by the model.

Fig. 8. The proposed model architecture

The model passes several improvements, which al-
low to define features with high impact on model per-
formance. This impact is quantitively represented by F1
score. Such features are isolated and used to create simple
networks.

The first improvement is to separate the phrases of the
conversation and pass each one to LSTM nodes sepa-
rately. Thus, the model is provided by a clearer vision of
sentence differences.

The second improvement is to extract emojis and smi-
leys from text for further separate processing. The emojis
are represented with Emoji2Vec embeddings, which pro-
vides new language information to the model. Emoji2Vec
is a 300-dimensional representation of Unicode smileys.
Further concatenation of information contained in emojis
with the data from the rest of the model is passed through
a final dense layer. This allows the model to weight the
relative importance of smileys in classifying the emotion.
The rectified linear unit is the activation function in this
dense layer.

BERT is used due to its applicability in wide range
of problems. The model is hosted on TensorFlow hub.

TensorFlow is a Google pre-trained machine learning re-
pository.

It provides an ability to download an implementation
which has to do with the following: the number of en-
coded layers, the number of heads in the multi-head at-
tention, the number of dense layers in the feed forward
network and the number of used training samples.

On the contrary to GloVe embeddings, BERT uses
word-piece embeddings and follows different pre-pro-
cessing and tokenizing which can be downloaded with
the ready to use pre-trained model. This allows to not to
perform pre-processing of the sentences but directly pass
sentences to BERT.

4. Experimental results

The table 2 illustrates the comparative micro-averaged
F1 results for the models on emotion classification. The
performance of the models was considered by evaluation
metric on Happy, Angry and Sad emotions. The model
performance on emotion class Others was ignored in this
evaluation.

The LSTM model achieved overall micro-averaged F1
as 0.616. This model required minimal data pre-process-
ing and GloVe word embeddings. The word embeddings
were trained on Wikipedia data. It can be seen in the ta-
ble, that the model achieved the worst results on Happy
conversations and the best results on Angry conversations.
The shortcoming of the model is the inability to distin-
guish the Happy, Angry and Sad emotion classes from the
emotion class Others.

Table 2
F1 scores

Model
Emotion F1

Micro F1
Happy Sad Happy

LSTM 0.523 0.601 0.724 0.616

BERT 0.687 0.799 0.771 0.752

SS-LSTM 0.556 0.818 0.784 0.719

Proposed
Model

0.784 0.767 0.811 0.787

BERT model achieved better results in macro F1 com-
paring to LSTM due to presence of extra context informa-
tion. The Angry emotion class was predicted as 0.771 F1
points. The Sad emotion class was also predicted better in
F1 points comparing to LSTM. The proposed model F1
scores are shown in the table. The model has shown the
best results in Angry and Happy emotion class.

The confusion matrix of the proposed model is shown
in table 3. The matrix illustrates the distribution between
the emotion labels in the test dataset. The most confu-
sion comes from distinguishing the Others emotion class
from Happy, Angry and Sad emotion classes. Angry and
Sad emotion classes are never evaluated by the model as
Happy and vice versa. The confusion between predicting
Angry and Sad labels is rarely present. On this basis, the

USAGE OF LSTM MODELS FOR NATURAL LANGUAGE UNDERSTANDING

26

focus should be put on prediction improvement between
Others emotion class and the other three emotion classes.

Table 3
Confusion Matrix

TRUE
Predicted

Others Happy Sad Angry

Others 4103 101 80 94

Happy 63 215 4 1

Sad 40 0 212 8

Angry 46 0 6 334

The idea of whether the early stopping effectiveness
on outfitting prevention is got by looking at the loss func-
tion over the training steps. The decrease of training loss
is present over the training steps. The validation loss is de-
creasing by reaching the minimum after three epochs and
rising afterwards (Fig. 9).

Fig. 9. Training and Validation Loss

The explanation behind this is the different distribu-
tion of emotions in the training dataset and validation
dataset. This can be seen in table 4. The loss from the
training set updates the gradients. The gradient updates
change the validation loss in other ways. The amount of
data points in the validation set is fewer comparing to the
training set, which contributes to higher variance in the
effects of updating the loss. On this basis, it is important
to use early stopping after 3 epochs since the improve-
ments in training loss are not translated to improvements
in validation loss after this epoch.

Table 4
Emotion Class Distribution

Others Happy Sad Angry Size

Train .441 .98 .211 .194 29884

Validation .793 .045 0.054 0.052 2467

Test .882 0.039 0.061 0.044 5804

Conclusions

The problem of emotion classification is a complex
task of language interpretation. The existing generic solu-
tions for text data processing were considered in this work.

The evaluation of performance of the considered
models was conducted. The proposed model shows bet-
ter results comparing to generalized model with transfer
learning.

There are many decisions applicable for solving the
emotion classification problem. There is a variety of fac-
tors to consider when choosing the word embeddings and
training methods to design the model architecture.

To date, machine learning models did not achieve the
human performance in terms of language representation
and emotion classification. The confusion is present in la-
beling complex sentence structures. Such nuances are ex-
plained by the language structure and its dynamic nature.

However, the area of capturing the language nuances is
constantly evolving and new approaches are created every
day.

References:

[1] Alex Graves and Jürgen Schmidhuber. Framewise phoneme
classification with bidirec- tional lstm and other neural net-
work architectures. Neural Networks, 18(5):602 – 610, 2005.

[2] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Su-
tskever, and Ruslan Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958, 2014.

[3] Y. Daniiel, K. Onyshchenko. Implementation of Recursive
Deep Learning Algorithms for Natural Language Processing.
Information Systems and Technologies 2021, 2021.

[4] I. Afanasieva, N. Golian, O. Hnatenko, Y. Daniiel, K. On-
yshchenko. Data exchange model in the internet of things
concept. Telecommunications and Radio Engineering 78
(10), 2019.

[5] Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel P. Kuksa. Natural language
processing (almost) from scratch. CoRR, 2011.

[6] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of tricks for efficient text classification. CoRR,
2016.

[7] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita.
A survey of the usages of deep learning in natural language
processing. CoRR, 2018.

[8] James Allen. Natural Language Understanding (2Nd Ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City,
CA, USA, 1995.

[9] Umang Gupta, Ankush Chatterjee, Radhakrishnan Srikanth,
and Puneet Agrawal. A Sentiment-and-Semantics-Based
Approach for Emotion Detection in Textual Conversa- tions.
2017.

[10] Daniel Jurafsky and James H. Martin. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[11] Christopher D. Manning and Hinrich Schütze. Foundations
of Statistical Natural Language Processing. MIT Press, Cam-
bridge, MA, USA, 1999.

The article was delivered to editorial stuff on the 27.09.2021

Yana Daniiel, Kostiantyn Onyshchenko, N. Kameniuk

