OBbEKTHOE MOJEJIHPOBAHHE. HEHPOHHBIE CETH H HEUPOMATEMATHKA

VK 004.8 DOi 10.30837/ bi.2021.1(96).05
Nataliia Golian!, Iryna AfanasievaZ, Vira Golian 3, Dmytro Panchenko?

lassociate professor of the department of Software Engineering,

¢ NURE, Ukraine, nataliia.golian@nure.ua

INTELLIGENCE 2associate professor of the department of Software Engineering,

NURE, Ukraine, iryna.afanasieva@nure.ua

3associate professor of the department of Software Engineering,

NURE, Ukraine, vira.golan@nure.ua
“master’s student of the department of Software Engineering,

Ukraine, dmytro.panchenko@nure.ua

APPLYING GRADIENT BOOSTING AS A STACKING ALGORITHM OVER BOTTLENECK
FEATURES TO ACHIEVE HIGH IMAGE CLASSIFICATION ACCURACY

With the development of the Internet, making many images available online for analysis, object recognition software
is gaining more and more attention from researchers. Factors are driving the development of computer vision today:
mobile devices with built-in cameras, the availability of computing power, the availability of computer vision and analysis
equipment, and new algorithms such as convolutional neural networks that take advantage of the power of hardware and
software. The work is generally devoted to the consideration of the problem of image classification using convolutional
neural networks. And in particular, one of the most popular and applied in practice machine learning algorithms — gra-
dient boosting applied to the bottlenecks of deep convolutional neural networks. It also discusses three scenarios for
applying gradient boosting to bottlenecks extracted from the last convolutional layer of the neural network. The essence
of boosting, as well as of other ensembles of algorithms, is to collect one strong from several weak models. The general
idea of boosting algorithms is to consistently apply predictors so that each subsequent model minimizes the error of the
previous one. Gradient boosting works by sequentially adding new models to past models so that errors made by previ-
ous predictors are corrected.

ARTIFICIAL INTELLIGENCE, COMPUTER VISION, GRADIENT BOOSTING, IMAGE, MACHINE
LEARNING, NEURAL NETWORK, PATTERN RECOGNITION

Tonan H., AdanacseBa U., Toxan B., [Tanyenko /1. [IpumeHeHne rpaJueHTHOr0 OYCTHHIA B KaYeCcTBe aJropurMa
CTEKHMHIA 110 Y3KMM MECTaM LIS IOCTHXKEHHUS BbICOKOii TOYHOCTH Kiiaccudukanuu uzoopaxkenuii. C passuruem MHTepHerta,
clieJIaBIIMM MHOTHE U300PakeHMsI TOCTYTHBIMU OHJIAMH [UIS1 aHAJIM3a, IPOrPaMMHOE 0OecrieueHue It pacIiO3HaBaHUsI
00BEKTOB MPUBJIEKAET BCe OOJIbIIIe BHUMaHUS vccienoBareieil. DakTopbl CTUMYIUPYIOT pa3BUTHE KOMITBIOTEPHOTO
3pEHMSI CETO/IHS: MOOUJTbHBIC YCTPOICTBA CO BCTPOCHHBIMU KAMEPaMM, JIOCTYITHOCTb BBIUMCIIUTEIbHOM MOLTHOCTH, J10-
CTYITHOCTb 000PYIOBaHUsI IJIsI KOMITBIOTEPHOTO 3pEHMSI M aHAJIN3a, & TAKXKE HOBBIE aITOPUTMbI, TAKUE KaK CBEPTOYHbBIE
HEWPOHHBIE CETU, KOTOPbIE MCITOJIB3YIOT alllapaTHbIC ¥ MPOrpaMMHbBIE BO3MOXHOCTU. PaboTa B 11e/I0M MOCBsiIeHa
PacCMOTPEHUIO MPOOIIEMbI KJIacCUbUKALIMN N300paskeHUI C TOMOLIbIO CBEPTOUHBIX HEMPOHHBIX ceTeil. M, BuacTHoCTH,
OJTHOMY M3 CaMBbIX TOIMYJISIPHBIX ¥ TPUMEHSIEMbIX Ha MPAKTUKE aITOPUTMOB MAIIMHHOTO O0YYeHUsT — rPalueHTHOTO
OycTHHTa, MPUMEHSIEMOTO K Y3KMM MecTaM ITyOOKUX CBEPTOYHBIX HEMPOHHBIX ceTeil. Takxke paccMaTpUBaIOTCS TPU
CLIeHapusl TPUMEHEHUSI TPAaJMEHTHOrO OYCTUHTA K Y3KUM MECTaM, U3BJI€UEHHBIM U3 MOCIETHEr0 CBEPTOYHOTO CIIOST
HelpoHHO# ceTu. CyTh OycTHHTA, PABHO KaK U IPYTUX aHCAMOJIei aIrOPUTMOB, COCTOUT B TOM, YTOOBI M3 HECKOJIBKHUX
c1abbIX MoJeseit coOpaTh OHY CUIbHYIO. O0IIast uaest alrTOPUTMOB OYCTHHTA — MOCIE0BATEIbHO TPUMEHSITh Mpe-
JTIUKTOPBI TAK, YTOOBI KaX/1as1 MOCeAyoIasi MOIeIb MUHUMU3MpPOoBaia OIIMOKY Mpeablayieil. [panneHTHbI OyCTUHT
paboTaeT nocjie0BaTeIbHO J00aBISIS K MPOILIBIM MOJEJISIM HOBBIE TaK, YTOOBI MCTIPABJISLTMCH OLIUOKH, TOTTYIIIEHHbIE
MPEAbIIYIIMMU TIPEAUKTOPAMHU.

MCKYCCTBEHHBIM MHTEJUTEKT, KOMITBIOTEPHOE 3PEHUE, TPAIMEHTHBIN BYCTWHT, N30-
BPAXKEHWE, MAIIMHHOE OBYYEHUE, HEMPOHHAS CETh, PACTTO3HABAHUE OBPA3OB

Tonsn H., Apanacsesa 1., Tosan B., ITanyenko /1. 3acTocyBaHHs rpaJiEHTHOTO OYCTIHIY B IKOCTI AJITOPUTMY CTEKIHTY
10 BY3bKHX MiCISX /I TOCATHEHHS BUCOKOI TOYHOCTI Kiacugikauii 300pakeHb. 3 po3BUTKOM [HTepHETY, 1110 3po0OUB
b6araTo 300paXkeHb JOCTYITHUMM OHJIAMH JJIs1 aHaJli3y, MporpaMHe 3a0e3rnedyeHH s IJ1s1 PO3ITi3HaBaHHS 00 €KTIiB Mpu-
BepTa€ Bce Oibllle yBaru AOCHiIHUKIB. DaKkTopu CTUMYITIOIOYi PO3BUTOK KOMIT IOTEPHOTO 30pY ChOIOIHI: MOOLTBHI
NpUCTpOi 3 BOyIOBaHUMU KaMepaMu, JTOCTYITHICTh OOYMCIIOBAIbHOI MOTYXKHOCTI, JOCTYITHICTb OOJIafHAHHS IS
KOMIT' FOTEPHOTIO 30pY i aHaJIi3y, a TAaKOX HOBi aJITOPUTMU, TaKi sIK 3ropTKOBiI HEMPOHHI MepeXi, sIKi BAUKOPUCTOBYIOTh
MOXJIUBOCTI 00JlaqHaHHSI i MporpamMHe 3abe3reueHHs. Pobora B 1ijioMy NpUCBsYeHAa pO3IJIsIay MpooaeMu Kiacudi-
Kallii 300paxkeHb 3a JOMTOMOI0I0 3rOPTKOBUX HEMPOHHUX MepeK. |, 30Kkpema, OIHOMY 3 HAaMMOMYJISIPHILIKX i 3aCTOCO-
BYBaHUX Ha MPaKTULIi aITOPUTMiB MAIlIMHHOIO HABYAHHS — rPaIiEHTHOMY OYCTIiHTY, 110 3aCTOCOBYETBCS 10 BY3bKHUX
MicCllb TIJTMOOKUX 3rOPTKOBUX HEMPOHHUX MepeK. TaKoxK po3riisiialoThesl TPU CLeHapii 3aCTOCYBaHHS I'pali€HTHOTO
OYCTIHTY 10 BY3bKHUX MiClLlb, JOOYTHX 3 OCTAHHBOTO 3rOPTKOBOTO 1Iapy HeiipoHHOI Mepexki. CyTh OycTiHra, Tak camo
SIK 1 IHILIMX aHCaMOJIiB aJITOPUTMIB, TTOJIATAE B TOMY, 1100 3 KiJIbKOX CJTAOKMUX MOJEJIel 3i0paTu OAHY CUJIbHY. 3arajabHa
iZIest aJIrOpUTMIB OyCTiHTa — MOC/iAOBHO 3aCTOCOBYBATH MPEAUKTOPHU TaK, 11100 KOXKHA HACTYITHA MOJIe/]Ib MiHIMi3yBaia
MOMUJIKY norepeAHboi. [pagieHTHUIT OYCTIHT Mpallo€e MOCIiAOBHO T0AAI0UN 10 MUHYJIUX MOJIEJIei HOBI Tak, 11100 BU-
MPaBJISUTHCS IIOMUJIKH, JOIYIICHI MOMepeIHIMU MPEANKTOPAMU.

[ITYYHUU IHTEJTEKT, KOMITIOTEPHUM 31P, TPAIIEHTHUM BYCTIHT, 306PAXKEHHS, MAIIINH-
HE HABYAHHS, HEMPOHHA MEPEXA, PO3TII3HABAHHS OBPA3IB

29

BVOHWKA MHTEJIJIEKTA. 2021. Ne 1(96). C. 29-34

XHYP3

1. Introduction and preliminaries

During the last few years, computer vision (and im-
age classification in particular) became one of the fastest
developing areas in computer science. Different methods
and algorithms to solve this problem were developed, and
the most prominent of them is the usage of convolutional
neural networks (CNN).

A neural network is a system of many neurons (pro-
cessors). Separately, these processes are quite simple, but
connected into a system, neurons perform very complex
tasks of collecting information.

Among the main areas of application of neural net-
works are forecasting, decision making, pattern recogni-
tion, optimization, data analysis. Neural networks are at
the heart of most modern speech recognition and synthe-
sis systems, as well as image recognition and processing.

CNN is a class of deep neural networks which was orig-
inally created specifically for image processing and analy-
sis. CNN is based on multilayer perceptron, but instead
of using only fully-connected layers (which are prone to
overfitting) it includes specific types of layers designed for
extracting patterns from complex input image. Moreover,
those layers allow CNNs to have less connections between
neurons therefore drastically decreasing time required for
network running.

The most basic CNNs are created using following
building blocks:

— convolutional layers;

— pooling layers;

— fully-connected layers.

Convolutional layers consist of neurons, each of them
covers specific part of the image (i.e. receptive field).
Kernel (filter) of the layer defines how data from receptive
field will be transformed into the output by its convolution
with an input. It means that network will learn filters that
activate when some specific type of feature is present at
that part of the image.

Apart from receptive field width and height convolu-
tional layers are also parametrized by their depth. Depth
means number of convolutions (channels) in the layer
which point to the same location of the input. These con-
volutions represent different features of the input area.

Pooling layers are used to reduce size of the input by
partitioning it into a set of non-overlapping squares. For
each such region single value is output, the most common
is to use maximum of all values in this region (max pool-
ing), but alternative approaches exist as well (e.g. average
pooling). As the result, minor and unimportant for the
problem at hand features are discarded, and important
ones are kept.

Common architectures of CNNs use alternating se-
quence of convolutional and pooling layers (latter ones
are inserted between successive convolutional layers).
Such approach allows to separate more and more general
features step by step.

30

After several convolutional and pooling layers usually
go one or more fully-connected layers. They are identical
to layers in regular (non-convolutional) neural networks
and used for actual classification of input based on fea-
tures extracted by convolutional layers.

2. Subject area

Neural networks derive their strength, firstly, from the
parallelization of information processing and, secondly,
from the ability to self-learn, that is, to create general-
izations. The term generalization refers to the ability to
obtain a reasonable result based on data that was not en-
countered in the learning process. These properties allow
neural networks to solve complex (large-scale) problems
that are considered intractable today. However, in prac-
tice, when working autonomously, neural networks cannot
provide ready-made solutions. They need to be integrated
into complex systems. In particular, a complex problem
can be divided into a sequence of relatively simple ones,
some of which can be solved by neural networks.

First attempts at applying deep neural networks to
computer vision problems were made in 90s by Yann
LeCun et al [1] — researchers achieved substantial results
in recognizing handwritten numbers in images.

However, deep learning did not become a commonly
used approach in computer vision until 2012, when it
was used by Alex Krizhevskiy et al [2] to achieve state-
of-the-art accuracy in ImageNet LSVRC-2010 competi-
tion. Krizhevskiy, Hinton and LeCun used convolutional
neural networks to develop automatic feature extraction
that is trained in an end-to-end manner with the classifier.

Main constraints that slowed down development of
deep learning at that point were:

— absence of the dataset big enough to fit models with
millions of trainable parameters;

— insufficient computational powers.

The identified problems were solved in the following
three ways.

First of all, several huge datasets were created and
labeled. The most well-known one is ImageNet [3] that
consists of several millions of images labeled to a thousand
classes (multiclass classification task).

Secondly, modern GPU architectures made research-
ers able to train deep models quite fast using hardware ac-
celeration. Even specialized hardware optimized for ten-
sor computations was developed [4].

It allowed researchers to train huge models and even
apply hyperoptimization algorithms that build large archi-
tectures utilizing hundreds of GPUs at a time as shown by
Zoph et al [5]. Network architecture developed by Zoph
et al called NASNet contained 88.9 million parameters
and achieved unprecedented at that time result of 0.960
top-5 accuracy on ImageNet. This example shows that
nowadays computational complexity is not a problem.
However, model speed still matters sometimes, and there

APPLYING GRADIENT BOOSTING AS A STACKING ALGORITHM OVER BOTTLENECK FEATURES TO ACHIEVE HIGH IMAGE CLASSIFICATION ACCURACY

are different tradeoffs, such as tradeoff of accuracy versus
inference speed (it is important for mobile applications
and IoT devices using deep learning models for instance)
and tradeoff of accuracy versus training speed (it can be
important for baselining and exploratory analysis, when
researcher wants to quickly assess how much accuracy can
be expected from the given data at all). At last, there are
cases when model speed does not matter at all, and ac-
curacy is the only crucial metric.

Lastly, researchers developed a way to reuse weights of
model trained on one dataset to another machine learning
problem. This approach is called transfer learning.

Today, in most applications of deep learning, especial-
ly in the field of computer vision, training a deep neural
network from scratch is impractical. The use of transfer
training is currently the key to the top results in many
problems. Transfer learning is an approach that takes a
network that has already been trained on a larger data-
set and then uses it as an initialization of the weight for
further training. Typically, ImageNet acts as such a large
dataset for preliminary training.

Transfer learning is based on the fact that convolution-
al neural network consists of two parts — convolutional
part and fully-connected part.

Convolutional part acts essentially as a feature extrac-
tor that generates structured and highly separable features
(sometimes called bottleneck features) from the unstruc-
tured input data — images in case of computer vision — by
applying several stacked spatial transformations — convo-
lutional and pooling layers.

Fully-connected layers in turn act as a classifier that
models decision boundary for specific categories of ob-
jects.

So the idea of network-level transfer learning [6] is to
reuse convolutional part of the network to apply weights
pre-trained on a large dataset to the target dataset which
is smaller (and in many cases even too small to train net-
work from scratch at all).

Another important aspect of using convolutional part
of a convolutional neural network as a feature extractor is
studied in a paper by Zeiler & Fergus [7]. The fact is dem-
onstrated that convolutional layers differ in terms of com-
plexity and level of abstraction of structures recognized
by these layers. It is shown that the deep layers of the
network, close to the input, are studied low-level struc-
tures and simple geometric shapes, such as colored spots,
lines, gradients. The closer the layer is to the bottleneck
the more high-level features are detected by this layer. It
means that latest layers of the deep convolutional neural
network represent dataset-specific structured features (for
example, for ImageNet last convolutional layer represents
such features as cat ears, car wheel, etc.) that act as effec-
tive descriptors for solving not only a problem at hand for
this particular dataset but a set of computer vision tasks
for all datasets that are visually similar to training data.

Meanwhile, in the field of tabular data classification,
where features are structured by nature, gradient boosting
has established itself as one of the state-of-the-art clas-
sifiers outperforming other algorithms in various prob-
lems with complex feature spaces and non-linear decision
boundaries [8]. The most popular and powerful imple-
mentations of gradient boosting over decision trees are
LightGBM [9], xgboost [10] and CatBoost [11].

LightGBM is a fast, distributed, high-performance
gradient boosting structure based on a decision tree al-
gorithm used for ranking, classification, and many other
machine learning tasks. Because it is based on decision
tree algorithms, it splits the best-matched leaf of the
tree, whereas other boosting algorithms divide the tree by
depth or level rather than leaf. Thus, when grown on the
same leaf in Light GBM, the leaf algorithm can reduce
more losses than the layer-by-layer algorithm, and there-
fore results in much better accuracy, which can rarely be
achieved by any of the existing boosting algorithms.

LightGBM uses the gradient one-sided sampling tech-
nique (GOSS) technique to filter data instances and find
the split value. At the same time, XGBoost uses a pre-sort-
ed algorithm and a histogram based algorithm to calculate
the best split. Observations / Samples are examples here.

More specifically, a histogram-based algorithm breaks
all data points for an object into discrete elements and
uses them to find the split value of the histogram. It is
more efficient than the pre-sorted algorithm in learning
speed, which lists all possible split points on the pre-sort-
ed feature values, but it still lags behind GOSS in terms
of speed.

GOSS (Gradient One-Way Sampling) is a new sam-
pling technique that downsamples based on gradients.
Cases with small gradients are well trained (small learning
error), and cases with large gradients are underscored. A
naive approach is to discard instances with small gradi-
ents, focusing exclusively on instances with large gradi-
ents, but that would change the distribution of the data.
GOSS keeps instances with large gradients by randomly
sampling instances with small gradients.

Benefits of LightGBM:

— high efficiency and fast learning speed. Light GBM
uses a histogram-based algorithm, that is, it combines
continuous feature values into discrete cells, which speed
up the learning process;

— lower memory usage. Replaces continuous values
with discrete cells, which in turn results in lower memory
usage;

— better accuracy than any other gain algorithm. It
creates much more complex trees using a sheet rather
than level approach, which is a major factor in achieving
higher accuracy;

— compatible with large datasets. It is capable of per-
forming equally well on large datasets with a significant
reduction in training time.

31

Nataliia Golian, Iryna Afanasieva, Vira Golian, Dmytro Panchenko

Finally, ensembles are used either in computer vision
or tabular data tasks. Ensembling is a technique of com-
bining outputs of several base learners to reach prediction
quality that is better than any of the standalone models is
able to reach by itself. Many researchers have studied en-
sembling and different ways of combining classifiers start-
ing with the bootstrap aggregation [12] and ending with
stacking [13].

Stacking is an ensembling technique that allows to
combine several models (in our case — classifiers) by using
their predictions as a set of input features to the second
level model (so called meta-classifier) [14].

The main idea of stacking is to use basic classifiers to
get predictions and use them as features for some general
algorithm. That is, the essence of stacking is the transfor-
mation of the original space of features of the problem
into some new space, the points of the latter are the pre-
dictions of the basic algorithms.

First, a set of pairs of arbitrary subsets is selected from
the training sample, and then, for each pair, it is neces-
sary to train the basic algorithms on the first subset, and
also predict the target variable for the second subset with
them. In this case, the predicted values become objects of
the new space. Stacking has been the primary way to en-
semble the underlying algorithms of many machine learn-
ing competitions.

It is proposed to use gradient boosting as a classifica-
tion algorithm for image classification task by applying
it over bottleneck features of deep convolutional neural
networks (in fact — stacking of bottleneck descriptors by
gradient boosting). The main contribution and novelty is
studying different scenarios of such stacking.

3. Methods

This article explores three scenarios of applying gradi-
ent boosting over bottleneck features extracted from the
last convolutional layer of a CNN:

— a convolutional neural network is taken, previously
trained on ImageNet. The bottleneck features of the fro-
zen network are extracted for all images in the training
and test parts part of the target dataset. After that the gra-
dient boosting is fitted on the training set and evaluate it
on the test set;

— a convolutional neural network is taken, pre-trained
on ImageNet. The network is fine-tuned to the target da-
taset by fitting it on the whole training subset. After that,
the bottleneck features of the fine-tuned network are ex-
tracted for all images in the training and test parts part
of the target dataset, the gradient boosting isfited on the
training set and evaluate it on the test set;

— several CNNs of different architectures are taken
with pre-trained ImageNet weights. The bottleneck fea-
tures are extracted from those networks, concatenated to-
gether and trained gradient boosting on the joint feature

32

vector on the training set. After that, it is evaluated again
on the test set.

The experiments are restricted by several assumptions.
First of all, the scenario when several networks are fine-
tuned to the target set is not tested, because in such case it
is possible to apply classical stacking over models’ predic-
tions instead of learning from the bottleneck layers.

Only scenarios in which meta-classifier is trained on
intermediate features extracted from a neural network are
discussed. Also, the folds-in-folds stacking approach that
prevents data leakage in the training set is not tested, be-
cause, firstly, out-of-fold model training and prediction
are impractical in real world situation and, secondly, be-
cause there is no any guarantee that particular bottleneck
features learnt by a neural network would have similar
meaning at different folds which is a crucial assumption
for using gradient boosting classifier after all.

The hypothesis is that structured features extracted by
a convolutional neural network from raw input data (such
as images) can serve as a suitable feature space.

4. Experiments

The experiments use data from the iMaterialist
Challenge (Furniture) [15]. Dataset consists of 194 828
images in the training set and 6400 images in the vali-
dation set. Each image in dataset represents one of 128
classes of furniture and household items (e.g. chairs, beds,
cookware, etc.), so it is a multiclass classification prob-
lem.

Examples of images (cookware) from dataset are pre-
sented in the Figure 1.

Fig. 1. Examples of images from iMaterialist Challenge
(cookware)

Also taken for research, examples of images (chairs)
from the dataset are presented in Figure 2.

Fig. 2. Examples of images from iMaterialist Challenge (chairs)

APPLYING GRADIENT BOOSTING AS A STACKING ALGORITHM OVER BOTTLENECK FEATURES TO ACHIEVE HIGH IMAGE CLASSIFICATION ACCURACY

LightGBM used as a gradient boosting classifier im-
plementation.

For testing purposes, the following CNN architectures
must be configured, pre-trained on ImageNet:

Xception [16];

— NASNet Large [5];

— DenseNet-201 [17];

— ResNet-152 [18].

A conventional convolutional layer handles the simul-
taneous correlation of adjacent points within one chan-
nel, spatial information (spatial information) and inter-
channel information, because convolution is applied to all
channels as a whole.

The Xception architecture assumes that these two
types of information can be processed sequentially and
without sacrificing network quality.

Xception decomposes regular convolution into spa-
tial convolution (processes spatial correlation in terms of
a single channel) and pointwise convolution (processes
inter-channel correlation).

The initial depth-separable convolution is the depth
convolution followed by the point convolution. Depth
convolution is a channel-by-channel nxn spatial convolu-
tion. Point convolution is a 1x1 convolution to change a
dimension.

The modified depth-separable convolution is a point
convolution followed by a deep convolution. Modified
deeply split convolution is used as the seed module in
Xception (an extreme version of the seed module).

Differences:

— sequence. The original depth-separable convolu-
tions first perform channel-by-channel spatial convolu-
tion, and then perform 1x1 convolution, as, for example,
in TensorFlow. The modified depth-separable convolution
first performs a 1x1 convolution followed by spatial wise
convolution. This is denoted as not so important as, when
used in a multi-layered setup, only slight differences ap-
pear at the beginning and end of all related starter mod-
ules;

— non-linearity. Non-linearity is observed in the
entry-level starter module after the first operation. In
Xception (modified depth-separable convolution), there
is no intermediate non-linearity of ReLU [16].

NASNet-Large is a pretrained model on a subset of
the ImageNet database. It belongs to the models of the
NASNet architecture family. The NASNet architecture
has been learned from data using a repetitive neural net-
work, instead of fully developed by humans like other pre-
trained models [5].

DenseNet-201 is a convolutional neural network with
201 layers deep. It is possible to download a pretrained
version of the network that has been trained on over a
million images from the ImageNet database. A pretrained
network can classify images into specific categories of

objects such as keyboard, mouse, pencil, and others. As
a result, the network studied the representations of func-
tions for a fairly large range of images.

ResNet is a deep residual learning framework for im-
age classification problem. Supports multiple architectural
configurations to achieve the right balance between speed
and quality. The ResNet architecture (with three of its im-
plementations: ResNet-50, ResNet-101 and ResNet-152)
has received successful results in ImageNet competitions.
The basic idea used in these models, residual couplings,
greatly improves gradient flow. This allows you to train
much deeper models with tens and hundreds of layers.

For each experiment two metrics are calculated: ac-
curacy and logloss.

Equation (1) displays the metric for calculating the
accuracy.

TP+TN
Accuracy = (1)
TP+TN + FP+ FN

Equation (2) shows the calculation for the metric rela-
tive to logloss.

H(p,q)=.p(x)logq(x) (2)
xe§

For performance reasons, gradient boosting is not
trained on the full concatenated feature vector from four
networks. Instead, PCA [19] is first applied to reduce the
feature space to 2048 vectors, and only then is gradient
boosting applied. Also, added flipped images to the train
dataset as a mean of simple offline augmentation.

Principal component analysis (multivariate statistical
analysis technology) is used to reduce the size of the fea-
ture space with minimal loss of useful information. The
implication is that each principal component is associated
with a certain proportion of the total variance of the origi-
nal dataset (load). In turn, variance, which is a measure
of data variability, can reflect the level of their information
content. Principal component analysis is included in most
analytical platforms and is widely used to reduce the di-
mension of input data at the stage of their preprocessing.

The main limitations of the principal component anal-
ysis are:

— impossibility of semantic interpretation of the com-
ponents;

— the method can only work with continuous data.

The method is sometimes considered as part of a more
general approach to data dimensionality reduction - fac-
tor analysis. In analytical platforms, it is the principal
component method that is often practically implemented
in factor analysis modules.

Networks of same architectures are used, fine-tuned to
the dataset as a baseline.

The data obtained from the results of the experiments
are presented in Table 1.

33

Table 1
Experiment data

Name Accuracy | Logloss
Xception 0.8677 0.5299

LightGBM over ImageNet
pre-trained Xception bottleneck features 0.7332 0.8920
LightGBM over fine-tuned Xception 0.6698 1.1906

bottleneck features

NASNet Large 0.8677 | 0.4956

Light GBM over ImageNet
pre-trained NASNet Large bottleneck | 0.7469 | 0.8879

features
Light GBM over fine-tuned NASNet

Large bottleneck features 0.6565 1.2727

5. Results and discussion

Experiments show that stacking bottleneck features
from a bunch of neural networks pre-trained on the
ImageNet performs best in terms of logloss (i.e. outputs
the most optimal probabilistic predictions of all tested
models). In terms of accuracy it is only 0.77% worse than
fine-tuned deep convolutional neural networks, however
training gradient boosting on bottleneck features requires
only a single inference from each network and fitting of
boosting itself, while fine-tuning of a single neural net-
work with Xception architecture takes around 30 GPU-
hours and fine-tuning of a single NASNet takes around 40
GPU-hours on GTX 1080.

6. Conclusion

The paper considers the use of gradient boosting as a
classification algorithm for the image classification prob-
lem. A study is presented to investigate scenarios for ap-
plying gradient boosting to bottlenecks extracted from the
last CNN convolutional layer.

It can be concluded that gradient boosting on bottle-
neck features of the pre-trained networks performs well as
a quick solution that does not require a lot of training. It
is important to notice that boosting on ImageNet features
works better than boosting on the features of already fine-
tuned model despite the fact that ImageNet features are
less optimized for this particular task. It can be explained
by the fact that training convolutional neural network as
a feature extractor and then gradient boosting as a clas-
sifier on a single dataset leads to a data leakage which
presents itself in a form of overfitting. Though it is anyway
impractical to use gradient boosting as a classifier when
the network is already fine-tuned, since full convolutional
network tuned in an end-to-end manner always performs
better.

As a point for further research it is proposed to com-
pare the considered approach stacking of bottleneck
features with gradient boosting as a meta-classifier, with
classical stacking approaches to determine optimal usage
strategies.

34

Conflict of Interest

The authors declare no conflict of interest.

References

[1] LeCun Y., Boser B., Denker J., Henderson D., Howard R.,
Hubbard W., Jackel L. Handwritten digit recognition with a
back-propagation network // Advances in Neural Information
Processing Systems 2, 1990. — P. 396-404.

[2] Krizhevsky A., Sutskever 1., Hinton G. ImageNet classification
with deep convolutional neural networks // Neural Informa-
tion Processing Systems, 2012.

[31 Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L.
ImageNet: A Large-Scale Hierarchical Image Database //
CVPRO09, 2009.

[4] Jouppi N.P., Young C., Patil N. In-datacenter performance
analysis of a tensor processing unit // CoRR, 2017. — http://
arxiv.org/abs/1704.04760.

[51 Zoph B., Vasudevan V., Shlens J., Le Q.V. Learning transfer-
able architectures for scalable image recognition // CoRR,
2017. — http://arxiv.org/abs/1707.07012.

[6] TanC., Sun F., Kong T., Zhang W., Yang C., Liu C. A Survey
on Deep Transfer Learning // 27th International Conference
on Atrtificial Neural Networks, 2018.

|71 Zeiler M.D., Fergus R. Visualizing and Understanding Convo-
lutional Networks // Computer Vision — ECCV 2014.

[8] Friedman J. Greedy function approximation: a gradient-
boosting machine // Ann. Statist. 29, 2001. — P. 1189-1232.

[9] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye O.,
Liu T.-Y. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree // Advances in Neural Information Processing
Systems 30, 2017. — P. 3146-3154.

[10] Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting
System // CoRR, 2016. — http://arxiv.org/abs/1603.02754.

[11] Dorogush V., Ershov V., Gulin A. CatBoost: gradient boosting
with categorical features support // CoRR, 2018. — http://
arxiv.org/abs/1810.11363.

[12] Machova K., Frantisek B., Bednar P. A Bagging Method
using Decision Trees in the Role of Base Classifiers // Acta
Polytechnica Hungarica 3, 2006.

[13] Wolpert D. H. Stacked generalization // Neural networks,
5(2), 1992. — P. 241-259.

[14] Marios Michailidis StackNet, StackNet Meta Modelling
Framework, 2017. — https://github.com/kaz-Anova/Stack-
Net.

[15] iMaterialist Competition 2018 https://sites.google.com/view/
fgvcS/competitions/imaterialist.

[16] Chollet F. Xception: Deep Learning with Depthwise Sepa-
rable Convolutions // CoRR, 2016. — http://arxiv.org/
abs/1610.02357.

[17] Huang G., Liu Z., Weinberger K. Densely Connected Con-
volutional Networks // CoRR, 2016. — http://arxiv.org/
abs/1608.06993.

[18] He K., Zhang X., Ren S., Sun J. Deep Residual Learning
for Image Recognition // CoRR, 2015. — http://arxiv.org/
abs/1512.03385.

[19] Shlens J. A. Tutorial on Principal Component Analysis // CoRR,
2014. — http://arxiv.org/abs/1404.1100.

The article was delivered to editorial stuff on the 13.01.2021

