
10

БИОНИКА ИНТЕЛЛЕКТА. 2021. № 1 (96). С. 10–14 хНурэ

Удк 004.75 DOi 10.30837/ bi.2021.1(96).02
Kyrychenko I.V.1, Kolesnyk V.V.2, Shmelov O.B.3

1PhD, Senior lecturer at the Department of Software Engineering, Kharkov National
University of Radio Electronics, iryna.kyrychenko@nure.ua, ORCID iD: 0000-0002-7686-6439

2Graduate students of the Department of Software Engineering, Kharkov National
University of Radio Electronics, valeriia.kolesnyk@nure.ua, ORCID iD: 0000-0001-7811-716x

3Graduate students of the Department of Software Engineering, Kharkov National
University of Radio Electronics, oleh.shmelov@nure.ua, ORCID iD: 0000-0002-7489-6386

tHe usage anD iMPleMentation of ParallelisM in go PrograMMing
language baseD on tHe MPi interface as a Message excHange MetHoD

The development of the methods for optimizing computer processes by the means of Go programming language.
The resources for MPI computations were analyzed from the side of Go programming language. Proposed attempts to
fabricate the ties the Go form devices hit their restriction of adaptability quick. Among the advantages of using Go pro-
gramming language for implementation MPI algorithms, could be saud that it eliminates the need for the developer to
manage memory and resources used by software manually, own binaries, fast and efficient compilation. Athough Golang
uses several resources to create parallel computations, MPI algorithms implemented by Golang methods and techniques
do not fully integrate exchange and computation. Were compared two Jacobi methods for solving partial differential
equation. The results showed that Go cannot coordinate the execution of C, although Go scales a part more pleasant
when using non-blocking communication when comparing the blocking C usage with the blocking Go execution and
and comparing the non-blocking implementations with each other. Go programming language is used for developing
massive systems that can speed up software code several times by properly converting sequential algorithms to competing
ones, nevertheless MPI developers are not recommended to use it due to its complexity for implementation. As a result,
there is currently almost no MPI implemented by Golang methods and techniques that would fully integrate exchange
and computation.

MESSAGE PASSING INTERFACE, PARAllEl PROGRAMMING, GO PROGRAMMING lANGUAGE,
JACObI METHOD

І.В. Кириченко, В.В. Колесник, О.Б. Шмельов. Використання і реалізація паралелізму в мові програмуван-
ня Go на основі інтерфейсу MPI як методу обміну повідомленнями. Розглянуто розробку методів оптимізації
ком’ютерних процесів за допомогою засобів мови програмування Go. Проаналізовано ресурси обчислення
Інтерфейсу передачі повідомлень, що містить мова програмування Go. Пропонується метод фабрикування
зв’язків для аналізу швидкості враження обмеження пристосованості. Серед переваг використання мови про-
грамування Go для реалізації алгоритмів MPI є факт усування необхідності розробнику керувати пам’яттю та
ресурсами, що використовуються програмним забезпеченням вручну, власними двійковими файлами, швидкою
та ефективною компіляцією. Хоча Golang використовує кілька ресурсів для створення паралельних обчислень,
алгоритми MPI, реалізовані методами та техніками Golang, не повністю інтегрують обмін та обчислення. було
порівняно два методи Jacobi для розв’язку рівняння з частковими похідними. Результати показали, що Go не
може координувати виконання C, а також, що Go масштабує частину при використанні неблокуючого зв’язку
та порівнянні неблокуючих реалізацій між собою. Мова програмування Golang є конкуруючим інструментом
розробки послідовні алгоритми на конкуруючі, проте розробникам MPI не рекомендується використовувати
його через його складність для реалізації. як результат, в даний час майже не існує MPI, реалізованого методами
та техніками Golang, які б повністю інтегрували обмін та обчислення.

ІНТеРфейС ПеРедаЧІ ПОВІдОМлеНь, ПаРалельНе ПРОгРаМУВаННя, МОВа ПРОгРаМУ-
ВаННя GO, МеТОд JAKObI

И.В. Кириченко, В.В. Колесник, О.Б. Шмелев. Использование и реализация параллелизма в языке програм-
мирования Go на основе интерфейса MPI как метода обмена сообщениями. Рассмотрена разработка методов
оптимизации комъютерних процессов с помощью средств языка программирования Go. Проанализированы
ресурсы вычисления интерфейса передачи сообщений, которые содержит язык программирования Go. Пред-
лагается метод фабрикации связей для анализа скорости поражения ограничения приспособленности. Среди
преимуществ использования языка программирования Go для реализации алгоритмов MPI может быть вы-
делен факт устранения необходимости разработчику управлять памятью и ресурсами, которые используются
программным обеспечением вручную, собственными двоичными файлами, быстрой и эффективной ком-
пиляцией. Хотя Golang использует несколько ресурсов для создания параллельных вычислений, алгоритмы
MPI, реализованные методы и техники Golang, полностью не интегрируют обмен и вычисления. Сравнены
два метода Jacobi для решения уравнения с частными производными. Результаты показали, что Go не может
координировать выполнение C, а также, что Go масштабирует часть при использовании неблокирующий связи
при и сравнения неблокирующий реализаций между собой. язык программирования Golang является конку-
рирующим инструментом разработки последовательные алгоритмы на конкурирующие, однако разработчикам
MPI не рекомендуется использовать его за его сложности для реализации. как результат, в настоящее время
почти не существует MPI, реализованного методами и техниками Golang, которые полностью интегрировали
обмен и вычисления.

иНТеРфейС ПеРедаЧи СООбЩеНий, ПаРаллельНОе ПРОгРаММиРОВаНие, яЗык ПРО-
гРаММиРОВаНия GO, МеТОд JAKObI

11

the usage and iMpleMentation of parallelisM in go prograMMing language based on the Mpi interface…

Introduction

With the development of personal computer processor
development technologies and the increasing demand for
fast calculations, the need to optimize computer comput-
ing processes is growing. To reduce the cost of software
support and unit processing, software customers rightly
require developers to process as much data as possible in
the shortest amount of time. Given the vast amount of
stakeholder data available to stakeholders, which is sub-
ject to, for example, analysis, effective sequential algo-
rithms alone are not enough to speed up processing.

Many algorithms are based on the sequential execu-
tion of certain actions on a list of entities.

because the actions performed on each element of
the processed sequence are not likely to change regardless
of the iteration number, such algorithms can be acceler-
ated several times using multi-core processor resources,
parallel programming methods and tools, and the Go (or
Golang) programming language.

Go programming language, which is quite low-level
and has many advantages, such as: static typing, garbage
collector - a tool that eliminates the need for the devel-
oper to manage memory and resources used by software
manually, own binaries, fast and efficient compilation,
easy to work with multithreading, the developer can man-
age and interact, for example, with threads and use all the
benefits of MPI.

1. Resources for parallel computations

The definition of the parallelism assumes that an ap-
plication splits its its tasks into smaller sub-tasks, process-
ing, for example, on multiple processors at the same time.
It is well-known fact, that a language that supports mul-
tiple processes at the same time is ideal for creating global
scalable programs.

Go uses several resources to create parallel com-
putations. One of such specifications is Message
Passing Interface (MPI). When working with Go, you
need to clearly define the concept of competitiveness.
Competitiveness is the ability of various elements of the
program, algorithms or tasks to run erratically, or in part
without affecting the initial result. This significantly af-
fects the efficiency of the software and the speed of per-
forming computational calculations.

The main tools for working with competition in the
Golang programming language are Goroutnies - easily
executable methods, or functions that are performed re-
gardless of the calling method or function. The efficiency
of Goroutines is largely due to their behavior, which is to
plan the processing of a given number of system threads,
which, in theory, allows you to process any number of
Goroutines. It is worth noting that one of the advantages
of using Gorutin in the Go is the minimization of the de-
veloper’s effort to write code.

Also, one of the basic concepts for working with com-
petitiveness in Go are channels - a way of communica-
tion between individual gorits. Channels are a conditional
«backbone» for communication and synchronization of
performed bursts. With the help of channels, there is no
need to create intermediate conditional variables that
would control and check each of the executed Goroutines
for the completion of a certain stage of the method or its
execution. Channels, like any container, must be pre-
created before use as follows: make (chan int). The given
code creates a channel for transmitting integers. To pro-
cess «events» created by transmitting data to channels
from bursts, you can use the select operator, which blocks
the execution of bursts until the operation of at least one
of the described situations.

2. Golang as MPI computation and its results

Golang is a static typed language that uses a compiler.
The program needs to explicitly declare types of variables,
so even trivial errors are easily detected. Although an in-
terpreter is available for Go, there is not much need for
one, as the compilation speed is high enough to ensure
interaction while development.

The Go programming language was developed itself
when the multi-core processors existed. It is the main
reason for builting-in the overlapping into the Golang.
Go has goroutine instead of having the threads. The gor-
outines consume approximately 2 Kb of memory. That is
why goroutines could be activated anytime. Among the
advantages of goroutines could be highlated:

 – goroutins have segmented extensible stacks that
consumes using more memory when necessary.

 – goroutines run faster than streams, it happens be-
cause of going with built-in primitives to safely share data.

 – in case of simultaneous using of data structures, it is
not necessary to use mutex locking.

 – 1 goroutine can operate freely on multiple streams.
Goroutins multiplexin a small number of the streams of
operating systems.

The MPI computations in Golang should be written
as a special algorithm. Obviously, it needs creation of the
function that definitely should be straightforward and
wrapper. The algorithm of writing such a function itself
includes following:

1. Identification of the inputs and ouputs for Golang
supports the return values with multiplication. The or-
ganization of the function signatures makes the usage of
the multiplication more comprehensible. This feature re-
quires separation the inputs from the ouputs. There are
some exceptions as memory regions pointers that are used
as buffers for arbitrary data.

2. Dispense with superfluous input/yield parameters:
A few MPI capacities anticipate clusters of a particular
sort (ordinarily numbers or MPI_-Datatype clusters). In
C those capacities anticipate an information pointer as

12

Kyrychenko i.v., Kolesnyk v.v., shmelov o.b.

well as the array size. In Golang we can make utilize cuts
instep. Since the length/measure of a cut is a portion of
its sort, an additional parameter for the estimate is unnec-
essary. In this manner, it is in some cases conceivable to
decrease the parameter list in a sensible way to maintain
a strategic distance from extra duplicate overhead (call by
esteem) and keep the marks clear by diminishing their
complexity.

3. Declare local variables for the output parameters:
MPI functions that are realized in C just return an er-

ror code and expect further output so-called output pa-
rameters. Obviously, we make use of the multiple return
value feature of Golang. This requires that the wrapper
holds a local variable for each output parameter that can
be passed in the function.

4. Call the C work inside line sort transformation of
the input parameters: before an input parameter can be
passed into the C work it needs to be converted to the
comparing C sort. Rather than investing extra nearby
factors which would require memory and runtime, we
straightforwardly change over the input parameters inside
the contention list of the C function.

5. Convert the sorts of the neighborhood factors and
return their worth to return the qualities, the covering got
through the yield boundaries of the C capacity, the nearby
factors which hold the information must be changed over
to Golang types [1].

Go additionally has a particular form framework.
When attempting to fabricate the ties the Go form devices
hit their restriction of adaptability quick. There were a few
issues when attempting to construct the ties for various
executions on a solitary framework. The arrangement was
to send a custom form framework written in Python. Go
has to know the area of the common article documents of
MPI to effectively construct the ties.

The Go form framework can use pkg-config. In any
case, on many register groups the common article docu-
ments are situated in some sort of custom envelope and
can’t be found by pkg-config. It is feasible to pass the way
of the common item documents to Go by sending out it
as a climate variable. The Python assemble script first at-
tempts to decide the way of the common item documents
by utilizing pkg-config and afterward adding custom ways
that are given to it by the order line. Another issue is that
not all MPI executions are totally viable with the standard
like they present diverse blunder codes. Since Go doesn’t
uphold macros the source code should be exceptionally
produced.

When introducing the ties, it is important to pass the
execution to the form script, so it realizes how to create
the source code. Since a process group can have more
than one MPI execution introduced, as OpenMPI and
MPICH2. It should be feasible to introduce the ties more
than once. The form content can produce various librar-
ies of the ties in the event that there is more than one

execution present. Taking a gander at the exhibition of
the MPI covering and the Go language utilizing a custom
benchmark and the different compilers used to make it.
The benchmark utilizes the Jacobi strategy to settle in-
complete differential conditions.

It is a line-by-line port of the C program bite the
dust Go program is contrasted and the parallelism is just
documented through the MPI covering. Each MPI cycle
just comprises of a solitary goroutine. The benchmark is
worked with various compilers and linkers. For example,
the default GNU bFD linker, the gold linker created by
Google for quicker connecting, and others. After the test,
the outcomes showed that Go can’t coordinate with the
presentation of C however that should have been normal.
One fascinating perception is that Go scales significantly
more pleasant when utilizing non-obstructing correspon-
dence when contrasting the hindering C execution and
the impeding Go execution and contrasting the non-ob-
structing executions and one another.

Traditional bunch-based frameworks (like supercom-
puters) utilize equal execution between processors uti-
lizing MPI. MPI is a correspondence interface between
measures that execute in working framework examples on
various processors; it doesn’t uphold other cycle tasks like
planning [2].

Fig.1. Using the Jacobi method
for solving partial differential equation

The point is that Go 1.0.3 is quite faster than 1.1.1.
The reason for this could be that Go 1.1.1 repeats slower
over cuts than 1.0.3. When taking a gander at the non-
obstructing correspondence benchmark clearly the GCC
compiler portion preferred improvements over the GC
compiler of Go.

The results appear that Go can not coordinate with the
execution of C but that was to be anticipated. One curi-
ously perception is that Go scales a part more pleasant
when using non-blocking communication when compar-
ing the blocking C usage with the blocking Go execution
and and comparing the non-blocking implementations
with each other [2].

13

the usage and iMpleMentation of parallelisM in go prograMMing language based on the Mpi interface…

Fig. 2. Using the Jacobi method

for solving partial differential equation

besides all above said nothing was said about commu-
nicators, groups, field of communications [3]. A group is
a set of branches. One branch may be a member of sev-
eral groups. MPI_Group type and set of functions work-
ing with variables and constants of this type. The constant
is actually two of them: MPI_GROUP_EMPTy can
be returned if the group with the requested characteris-
tics can be created, but does not yet contain any branch;
MPI_GROUP_NUll returns when the requested char-
acteristics are contradictory. According to the MPI con-
cept, once a group is created, it cannot be supplemented
or truncated - only a new group can be created under the
required set of branches on the basis of the existing one.
The field of communication («communication domain»)
is something abstract: there is no type of data at the pro-
grammer’s disposal that describes directly the fields of
communication, and there are no functions to manage
them. Areas of communication are automatically created
and destroyed along with communicators. Subscribers of
one area of communication are all tasks of either one or
two groups. The communicator or, or the communicator
area descriptive, is the apex of a three-layer pie (groups,
areas of communication, descriptions of communication
areas) into which «baked» tasks: it is with communicators
that a programmer deals, causing data transmission func-
tions, and most of the support functions.

Why do we need different groups, different areas of
communication and different descriptions? In essence,
they serve the same purpose as message identifiers - help-
ing the receiver branch and the receiver branch to iden-
tify each other more reliably, as well as the content of the
message. branches within a parallel application can be
combined into subcollectors to solve intermediate tasks
- by creating groups, and areas of communication over
groups. Taking advantage of the descriptive of this area
of communication, branches are guaranteed not to ac-
cept anything from outside subcollectional, and nothing
is sent out. In parallel, they may continue to use any other

non-subcollectional communicator at their disposal, such
as MPI_COMM_WORlD, to exchange data within the
entire application. Collective functions create a duplicate
of the received communicator argument, and transmit
data through a duplicate, without fear that their messages
will be inadvertently confused with the messages of the
«dot-dot» functions distributed through the original com-
municator. A programmer for the same purpose in dif-
ferent pieces of code can transmit data between branches
through different communicators, one of which was cre-
ated by copying the other.

Communicators are distributed automatically (by
the functions of the «Create a New Comunicator» fam-
ily), and for them there are no jokers («take it through
any communicator») - two more of their essential advan-
tages before message identifiers. Identifiers (integers) are
distributed manually by the user and this is the source
of two frequent errors due to confusion on the receiving
side: Messages with different meanings are mistakenly as-
signed the same identifier manually. The reception func-
tion with the joker collects everything, including those
messages that must be received and processed elsewhere
in the branch. Intercommunicators and intracommunica-
tors are also important parts in parallel programming in
Golang. The descriptions of the communication regions
respectively over two groups or over one. MPI_COMM_
WORlD is an interagency communicator.

Intercommunicators are not a primary need for begin-
ners, so there is no reference to them outside this para-
graph. All the communicator functions mentioned in the
document either do not distinguish between «intern» and
«intern» at all or explicitly require an «intern». The latter
are as follows:

 – MPI_bcast members;
 – Topology management functions;
 – MPI_Comm_xxx information functions, which are

implemented through MPI_Group_xxx, such as MPI_
Comm_size;

 – MPI_Comm_remote_xxx is used instead [4].
Custom topologies. Inside the problem group are num-

bered linearly from 0 to (the size of group-1). However,
another numbering system can be additionally imposed
on them through the communicator. Such additional sys-
tems in MPI are two: the Cartesian n-dimensional lattice
(cyclically and without), and the bioorientated graph.
Functions are provided to create numbering (MPI_Topo_
test, MPI_Cart_xxx, MPI_Graph_xxx) and to convert
numbers from one system to another. This mechanism
should not be perceived as providing an opportunity to
adjust branch-to-branch connections to a hardware to-
pology to increase speed; it merely automate the address
recalculation that branches are supposed to perform, say,
in matrix computation: Through the communicator is
given a Cartesian coordinate system, where the coordi-
nates of the branch coincide with the coordinates of the

14

submatrix it calculates. Multithreading. MPI itself implic-
itly uses multithreading very widely, and does not prevent
the programmer from doing the same. However, different
problems have MPI NECESSARIly different numbers,
and different threads (threads) within the same problem
do not differ [5]. The programmer himself must establish
a discipline for threads so that one thread does not, say,
cause MPI_Recv to be intercepted by the joker, which
must receive and process another thread of the same
task. Another source of errors can be the use of different
threads of collective functions over the same communica-
tor: use MPI_Comm_dup!File handling. In MPI-2, file
redirection tools have been introduced, but not in MPI-1.
All function calls are passed directly to the operating sys-
tem (Unix/Parix/NFS/...) on that machine.

Conclusion:

As the conclusion could be said that nevertheless the
Golang programming language is a very promising tool
for developing massive systems that can speed up soft-
ware code several times by properly converting sequential
algorithms to competing ones, MPI developers are not

recommended to use it due to its complexity for imple-
mentation. As a result, there is currently almost no MPI
implemented by Golang methods and techniques that
would fully integrate exchange and computation.

References:

[1] Gropp W. Using MPI: Portable Parallel Programming with
the Message-Passing Interface. / W. Gropp, E. lusk, S.
Anthony – 328 с.

[2] A Golang Wrapper for MPI: https://hps.vi4io.org/_media/
teaching/sommersemester_2013/paps-1213-beifuss_weging-
golang_bindings_for_mpi-report.pdf

[3] MPI: A Message-Passing Interface Standard Version 3:
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.
pdf.

[4] Alexander beifuss, Johann Weging, Dr. Julian Kunkel. A
Golang Wrapper for MPI: http://docplayer.net/50544314-
A-golang-wrapper-for-mpi.html.

[5] Alan A. A. Donovan. The Go Programming language / Alan
A. A. Donovan, brian W. Kernighan.. – 380 с.

[6] I. balbaert. The Way to Go: A Thorough Introduction to the
Go Programming language. Iuniverse.Com, 3 2012.

The article was delivered to editorial stuff on the 24.02.2021

Kyrychenko i.v., Kolesnyk v.v., shmelov o.b.

