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MAXIMUM-VERSUS-MEAN ABSOLUTE ERROR IN SELECTING
CRITERIA OF TIME SERIES FORECASTING QUALITY

INTELLIGENCE

In time series forecasting, a commonly accepted criterion of the forecasting quality is the root-mean-square error
(RMSE). Sometimes only RMSE is used. In other cases, another measure of forecasting accuracy is used along with
RMSE. It is the mean absolute error (MAE). Although RMSE and MAE are the common criteria of time series fore-
casting quality, they both register information about averaged errors. However, averaging may remove information about
volatility, which is typical for time series, in a few points (outliers) or narrow intervals. Information about outliers in
time series forecasts (with respect to test data) can be registered by the maximum absolute error (MaxAE). The MaxAE
criterion does not have any relation to averaging. It registers information about the worst outlier instead. Therefore, the
goal is to ascertain the best criteria of time series forecasting quality, wherein the RMSE criterion is always present. First,
12 types of benchmark time series are defined to test and select criteria. The time series is of 168 points, whereas the last
third of the series is forecasted. After having generated 200 times series for each of those 12 types, ARIMA forecasts are
made at 56 points of every series. All the 2400 RMSEs are sorted in ascending order, whereupon the respective MAEs and
MaxAEs are re-arranged as well. The interrelation between the RMSE and MAE/MaxAE is studied by their intercor-
relation function. RMSEs and MaxAEs are “more different” than RMSEs and MAEs, because the correlation between
the RMSE and MAE is stronger. Consequently, the MAE criterion is useless as it just nearly replicates information about
the forecasting quality from the RMSE criterion. Inasmuch as the MaxAE criterion can import additional information
about the forecasting quality, the best criteria are RMSE and MaxAE.

TIME SERIES FORECASTING, FORECASTING QUALITY, ROOT-MEAN-SQUARE ERROR, MEAN
ABSOLUTE ERROR, MAXIMUM ABSOLUTE ERROR, OUTLIERS, ARIMA FORECASTING, INTERCOR-
RELATION FUNCTION

Pomaniok B. B. MakcumalibHa npoTH cepeaHboi a0COI0THOT OXUOKH NPU BUOOPI KPUTEPiiB IKOCTi MPOrHO3YBAHHS
yacoBux psafiB. [1py nporHo3yBaHHI 4acOBUX PSJIiB SIKiCTh MPOrHO3iB 3araJIbHOMPUIHSITO OLIIHIOBATU 32 KPUTEPIEM
cepenubokBanpatnyHoi moMiku (RMSE). Inoni timeku RMSE it BukopucroBytots. B iHimx Burmankax, pazom 3 RMSE
BUKOPHUCTOBYEThCS 11I¢ OTHA Mipa TOYHOCTI ITPOrHO3yBaHH:. Takoo Miporto € cepenHst abcomorHa mommika (MAE). Xoua
RMSE it MAE € 3aralbHOMpUHATUMM KPUTEPisIMU SIKOCTi IIPOTHO3yBaHHSI YaCOBOTO PsILY, BOHU 00MaBa (hiKCyIOTh
iH(popMmaliito npo ycepeaHeHi moMmwiku. OnHaK ycepeaHEeHHsI MOXe CTUpaTy iHhopMallilo Ipo BOJATUIIBHICTD, sSIKa
€ TUIIOBOIO /TSI YACOBUX PS/IiB Y TOUKAX BUKUIIB a00 Ha By3bKHUX iHTepBaiax. IHDopMallisi Tpo BUKUIU Y TPOTHO3aX
YacoBOTo psi1y (BiIHOCHO TECTOBUX IaHUX) MOXe OyTH 3ahikcoBaHa 3a IOTTOMOT0I0 MaKCUMYMY a0COJIFOTHOI ITOMUWJIKU
(MaxAE). MaxAE-kpurepiii He Ma€ XKOIHOTO CTOCYHKY 10 ycepenHeHHs. HaToMicTh BiH (pikcye iHpopMaliiro mpo Haii-
ripmmii Bukua. Tomy MeTa nosisirae y BCTaHOBJICHHI HalKpallMX KpUTEPiiB SIKOCTI MPOTHO3YBaHHS YaCOBUX PSIIIB, 1e,
monpasaa, RMSE-kpurepiit 3aBxau npucyTHiii. CrioyaTKy BUSHAYAIOTHCS 12 TUITiB KOHTPOJIBHUX YACOBUX PSIIIB IS
TeCTyBaHHs i BUGOpY KpuTepiiB. YacoBuii psi CKiIagaeThes 3i 168 ToUoK, MpUIOMY MPOTHO3YETHCSI OCTAHHST TPETHHA
1IbOTO psiy. 3reHepyBaBiy 200 YaCOBUX PSIIiB VTSI KOXKHOTO 3 12 TUIiB, BUKOHYIOThCcsI ARIMA-TIporHo3u y 56 Toukax
KkoxxHoro psay. Bei 2400 3naueHb RMSE copTyloThbest y MOpsiiKy 3pOCTaHHsI, ITic/Isl 4oro BiAnoBiaHi 3HaueHHs1 MAE
i1 MaxAE TakoX ynmopsiamkoByloThcsa HaHOBO. B3aemocmiBBigHomeHHs Mixk RMSE it MAE/MaxAE BuBYaeThed 3a ix
B3aeMoKopeJsiiiiHoo ¢yHKiiew. 3HaueHHs RMSE it MaxAE € “6inpin pisaumu”, Hixk 3HaueHHs RMSE it MAE,
ockibku Kopensuist Mixk RMSE it MAE e cunbHioro. Otxe, MAE-kputepiii He Ma€e CeHCy, TOMY 1110 BiH ITPAaKTUYHO
MOBTOPIOE iH(hOPMaLlito Mpo sIKicTh MporHodysaHHs 3 RMSE-kputepito. Ockinbku MaxAE-kputepiit Moxe BHOCUTH
JIOATKOBY iH(opMallito Mpo SKiCTh MPOrHO3yBaHHS, HalikpamuMu kputepisimu € RMSE it MaxAE.

[MTPOTHO3YBAHHSA YACOBUX PANIB, AKICTb MTPOTHO3YBAHHS, CEPEAHBOKBAJIPATUYHA
[MOMUIIKA, CEPEAHS ABCOTIOTHA TIOMUIKA, MAKCUMYM ABCOJIIOTHOI TOMUJIKH, BUKUIH,
ARIMA-TIPOTHO3YBAHHS, B3SAEMOKOPEJIALITMHA OYHKILIIA

Pomaniok B. B. MakcumaibHasi I(POTUB cpeiHeii a0COTIOTHOI OIIMOKY NPH BbIOOPE KPUTEPHEB KAYECTBA POTHO3UPO-
BaHNs BpeMEHHBIX PsoB. [1pu MporHo3upoBaHUU BPEMEHHBIX PSIIOB KAUe€CTBO MPOTHO30B OOLIETTPUHSTO OLIEHUBATh
0 KpuTepuio cpenHekBaapatudeckoii ommboku (RMSE). Muorna tonsko RMSE u ucnonbs3yior. B apyrux ciydasx,
Bmecte ¢ RMSE ucnonbsyetcs eni€ oqHa Mepa TOUHOCTU TTPOTHO3UPOBaHUs. Takoii Mepoil sIBiIsieTcst CpeaHsist abco-
moTtHas omrboka (MAE). Xotss RMSE u MAE sBnsitoTcst 00IIeTPUHSTBIMU KPUTEPUSIMU KayecTBa MPOTHO3MPOBaA-
HUSI BpEMEHHOTO psijia, OHU 00a (PUKCUPYIOT MHGMOPMaLMIO 00 YCpeAHEHHBIX olnoKax. OgHaKO yCpeIHEHUE MOXKET
CcTUPaTh MHGOPMAIIHIO O BOJIATHIIBHOCTH, KOTOpast THTTMYHA TSI BpeMEHHBIX PSIIIOB B TOUKAaX BHIOPOCOB MJTM Ha Y3KUX
uHTepBaiax. MHdopmalius o BBIOpocax B IPOrHO3aX BPEMEHHOTO psiia (OTHOCUTEIbHO TECTOBBIX TAHHBIX) MOXET ObITh
3auKcUpoBaHa IpU ITOMOIIN MaKCcUMyMa abcomoTHo ommoku (MaxAE). MaxAE-kputepuii He ”MeeT HUKAKOTO
OTHOIIIEHUS K ycpeaHeHu1o. BmecTo aToro oH dukcupyer nHdopmaimio o Hauxyaiiem Beiopoce. [ToaTomy 1iens co-
CTOUT B YCTAHOBJICHU M HAWJTYYILINX KPUTEPUEB KauecTBa MPOTHO3MPOBAaHUS BPEMEHHBIX PSIIOB, Ie, BiipoueM, RMSE-
KpUTepUii MPUCYTCTBYET Beeraa. CHavasia orpeaessitoTes 12 THOB KOHTPOJIbHBIX BDEMEHHBIX PSIIOB LTSI TECTUPOBAHUS
1 BBIOOpa KpuTepureB. BpeMeHHoI psin cocTouTt n3 168 Touek, MpUIEM IMMPOTHO3UPYETCS ITOCIIEIHSIST TPETh 3TOTO Psifia.
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XHYP3

CrenepuposaB 200 BpeMEHHBIX PSIIOB IJIsT KaXaI0ro u3 12 tumos, ocyiecTsisiiorcss ARIMA-IporHo3sl B 56 Toukax
kaxnoro psga. Bee 2400 3nauenuit RMSE coptupyloTces B mopsiike Bo3pacTaHusl, IOC/e Yero COOTBETCTBYIOLINE
3HaueHust MAE 1 MaxAE Takxe ynopsimounBatoTcst 3aHoBo. B3zanmocooTHoteHue Mexay RMSE u MAE/MaxAE
M3ydaeTcs 1o UX B3auMoKopesiuoHHoM ¢pyHKiuu. 3HayeHuss RMSE u MaxAE sBrsiorcs “0osee pa3HbIMU”, 4eM
3HaueHusi RMSE u MAE, nockoinbky koppessuus mexay RMSE u MAE cunbhee. Utak, MAE-kpurepuii 6ecrio-
JIe3eH, TTIOTOMY YTO OH TIPaKTUYECKU IyOoaupyeT nH(OpMaIuio o KauecTBe mporno3uposanus n3 RMSE-kpurepust.
IMockonbky MaxAE-kputepuii MOXKeT MPUBHOCUTD TOMTOJTHUTEIBHYIO MH(GOPMAIIMIO O KAYeCTBE MTPOTHO3MPOBAHUS,

HauJaydymumMu kpurepusimu sipisitorcst RMSE u MaxAE.

MNPOIHO3MPOBAHUWE BPEMEHHDbIX PANOB, KAYECTBO ITPOTHO3MPOBAHN A, CPEJJTHEKBA/IPA-
TUYECKAS OIIIMBKA, CPEAHAA ABCOTIOTHAS OIIIMBKA, MAKCUMYM ABCOJTIOTHOM OLITMBKH,

BBIBPOCDHI, ARIMA-TTPOTHO3MPOBAHUE, B3AUMOKOPEJIALIMOHHAA ®YHKIINA

1. Common criteria of time series forecasting quality

Time series forecasting is applied to control and pre-
dict processes comprising sequences of data. The quality
(accuracy) of forecasting depends on which approaches
are used to forecast, length of forecast, and which cri-
teria are used to estimate the quality. A commonly ac-
cepted criterion is the root-mean-square error (RMSE)
[1, 2]. Sometimes only RMSE is used. In other cases, an-
other measure of forecasting accuracy is used along with
RMSE. It is the mean absolute error (MAE) [3]. Although
RMSE and MAE are the common criteria of time series
forecasting quality [4], they both register information
about averaged errors. Meanwhile, time series forecasts
are never guaranteed to be similarly scattered around test
data points (with respect to which the forecasting accu-
racy is estimated). Volatility is typical for times series,
and it becomes more intense for farther points forecasted.
However, averaging may remove information about vola-
tility in a few points (spikes) or narrow intervals.

Information about spikes (which also may be referred
to as outliers) in time series forecasts (with respect to test
data) can be registered by the maximum absolute error
(MaxAE). The MaxAE criterion does not have any re-
lation to averaging [5]. An open question is whether it
is better to estimate forecasting accuracy by using only
RMSE, or the pair of RMSE and MAE, or the pair of
RMSE and MaxAE.

2. The goal and tasks to achieve it

The goal is to ascertain the best criteria of time series
forecasting quality (accuracy). To achieve the goal, the
following three tasks are to be completed. First, bench-
mark time series will be defined to test and select criteria.
The four options are the single RMSE criterion, RMSE
and MAE, RMSE and MaxAE, or RMSE by MAE and
MaxAE. Second, an analysis of MaxAE versus MAE will
be carried out after forecasts are made by the ARIMA ap-
proach [1, 2, 6, 7]. Finally, the selection of criteria should
be justified followed by an appropriate conclusion.

3. MaxAE criterion

Consider a time series defined on a sequence of time
points t=1,7 , where T is an available amount of data
(not to be confused with the availability of data in real-
world practice, where forecasting is “blind” and the

4

factual accuracy of forecasts is principally indetermina-
ble until time point 7 is reached). Hereinafter, it is eas-
ier to presume that, without losing generality, 7, =i. Let

{ y(t,. )}zl by 7, <T be the data by which forecasts are
made at 7, =7;+1,T . So, set { y(t,. )}’TEI is the time series
to be forecasted for 7'—7, time points ahead.

Data { y(r, )}IZTO+1 are used for testing the forecasting

accuracy. These data are normalized (standardized to the
range from 0 to 1) as follows [8, 9]:

0 y(t)=, min_y(r,) "
ult;)= — .
kg};aifry(tk)—k:%y(tk)

The standardization by (1) allows comparing the fore-
casting quality for different time series defined along the
same number of points to be forecasted. Similarly to (1), if
{ (7, )}iT=T0+1 are forecasted data (regardless of approaches

used to forecast), they are normalized also (with respect
to the initial data):

y()=, min_y(s)

y(t)~ min_y(s,)

a(t,)=

(2)
max
k=Ty+1, T

Then the RMSEis [1, 2]

1 I ~ 2
P rysEe —Jﬁi_%+l[”(ti)_”(tf)] (3)
and the MAE [3] is

| _
P mae =T——TO > |”(’i)_”(fi)|' )

i=Ty+1

The difference between RMSE (3) and MAE (4) is not
that much. Obviously, owing to the square, the RMSE
criterion intensifies greater errors. This is why it is uncon-
ditionally used almost everywhere to compare data, func-
tions, surfaces, etc. [5, 10]. The MAE criterion is some-
times claimed to be more suitable but reasons behind this
are quite unclear. A very serious drawback of both RMSE
and MAE is that they do not show outliers. This is so be-
cause outliers, if any, are lost due to averaging. On the
contrary, the MaxAE calculated as

P MaxaE =i:%|”(ti)_”(ti )| (5

registers information about the worst outlier [11, 12].
Therefore, whereas RMSE (3) is a compulsory criterion,
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using MAE (4) or/and MaxAE (5) requires a thorough
research and subsequent justification.

4. Benchmark time series

The benchmark time series are based on 12 random-
like sequences with repeatability. Every sequence is gen-
erated by using pseudorandom numbers drawn from the
standard normal distribution (with zero mean and unit
variance) [8, 13, 14]. Apart from the repeating random
“pure” sequence, a trend, seasonality, and extinction
properties are embedded into the sequences by the fol-
lowing patterns [15]:

1)=[a,+0.250,(T)]s (t)+a,© (6)

1)=[a,+0.250,(T)]r, (1) +a,0, )+a3t, (7

1)=[a,+0.2504(T) |r; (r)+

+a,0 (T)+[ a, +0.250, (T) |as cos(vr) , (8)
1)=[a,+0.250(T) |r, (1) + 2,04 (T) +
+ayt+[ a, +0.250 (T)]a5 cos(vt), )

1)=[a,+0.250,,(T) |5 (t)e ™ +a,0,(T), (10)

tﬁ{q+0%®nﬁﬂggpw+%®MG% an
1)=[a,+0.250,5(T)]r, (1) "
+a,0,4(T)+ayt

)] (B)e™" +

(12)

=[a,+0.250,,(T

+a,0 4 (T)+[ a, +0.250,, (T)]a5 cos(vr)e™', (13)
1)=[a,+0.250,, (T) |r, (t)e ™' +a,0,,(T)+
+ay1 +[ a, +0.250, (T) |as cos(vt)e™™" , (1)
1o (£)=[ @ +0.250 5 (T) |1y (1)’ +
+a,0,, (T)+ayt (15)

yu(t |:al +0.250,5(T :|rll e’ +

+8,0,4 (T)+[ a, +0.250,, (T) Jas cos(vt)e’ , (16)

Yot |:al +0.250 )]"12 (1)e™ +a,0, (T)+

+ayt +[ a, +0.2505 (T') Jas cos(vr)e™

a7)

where 7, (t) is a sequence of identical randomly-structured
subsequences (whose shape is not that random and it still
may have some roughly-regular convexities/concavities)
of type g, {@, (T
numbers (these vectors are used to simulate noise and
volatility), {a, >0}"_
and factor v > 0 indicates an oscillation frequency. Initially,

30
)}1=1 are vectors of 7" pseudorandom
is a set of adjustable coefficients,

a time series is generated by

a=2,a=0.175, a;=0.01, a, =5, a;,=0.18,
v=0.02, a,=0.0005, 7'=1680,

where every sequence ry (t) is of 6, 7, or 8 subsequences,
g =1,12 . Then the time series is equidistantly downsampled
so that 168 time points remain. These points are smoothed
producing thus the benchmark time series. Graphical
examples of benchmark time series generated by (6) — (17)
are presented in Figure 1.

It is worth noting that the benchmark series are in-
tentionally generated in a way preventing from forecast-
ing trivial time series (being “easy-to-forecast-with-
high-accuracy” time series). Although the downsampled
time series is smoothed, fluctuations in it are still present
(due to every initial sequence of 1680 points has severe
spikes which cannot be literally smoothed). Moreover,
the smoothing itself may produce outliers at the start-
ing and ending time points, i. e. at , =1 and f,, =168
. For example, an outlier is seen in the top left subplot
in Figure 1. Thus, despite this subplot represents the sim-
plest case without trend and seasonality, the forecasts are
not likely to be accurate. Another outlier example is in the
second row middle subplot, where the ending time point
has unexpectedly dropped down. Similar cases with out-
liers are seen in Figure 1 as well. Such benchmarking is
made to obtain more significant differences in accuracy.
This subsequently will allow making more effective deci-
sions on the best criteria of time series forecasting quality.

5. MaxAE versus MAE

After having generated 200 times series for each of
those 12 types by 7' =168, ARIMA forecasts are made
at t,=113,168 (i. e, the forecast length is one third of
the available data). The worst and best forecasts (whose
RMSEs are the highest and the least for the given type, re-
spectively) are presented in Figure 2. All the 2400 RMSEs
are sorted in ascending order, whereupon the respective
MAEs and MaxAEs are re-arranged as well. They are
shown in Figure 3, where 10 worst RMSEs along with the
respective 10 MAEs and MaxAEs are cut off due to they
correspond to unacceptable forecasts (see Figure 2).

The interrelation between the RMSE and MAE/
MaxAE can be studied by their intercorrelation function

[16, 17]. If {cj}j=l and {arj}j=1
where ¢; =0 and d; =0 by j<1 or j>n, their intercor-

are some real-valued data,

relation function is a sequence calculated as follows:

n
= ch 'dj—z
=1

Inasmuch as the RMSEs, MAEs, and MaxAEs are
differently scattered from minimum to maximum val-
ues, it is better to normalize them before calculating in-
tercorrelation functions by (18). For this, every value of
the respective criterion is divided by the maximum (cor-
responding to the worst forecast). The intercorrelation

for z=-n+1,n-1.

(18)

5
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functions calculated in this way are presented in Figure 4.  This is so because the intercorrelation function of RMSEs
The normalized intercorrelation functions are shown in  and MaxAEs is closer to the intercorrelation function of
Figure 5 allowing to see more distinctly that RMSEs and RMSEs and noise, whereas correlation with noise is al-
MaxAEs are less correlating than RMSEs and MAEs.  ways the least.
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Fig. 1. Graphical examples of the 12 types of benchmark time series
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V]

Fig. 2. The worst and best forecasts for each of the 12 types of benchmark time series
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Fig. 3. The distribution of the sorted RMSEs (seen as a line in the middle) of forecasts along
with the re-arranged MAEs (points below) and MaxAEs (points above) for the 2390 time series
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Fig. 4. The three intercorrelation functions of 2390 RMSEs and MAEs, MaxAEs,
and a pseudorandom sequence of values (noise) from interval [0; 1]
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Fig. 5. The normalized intercorrelation functions from Fig. 4
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In fact, Figures 3 and 5 are an experimental proof of
that using the RMSE and MaxAE criteria is better than
using the RMSE and MAE criteria to estimate the time
series forecasting quality. When RMSEs are sorted in ei-
ther ascending or descending order, MaxAEs are more
scattered than MAEs (see Figure 3). RMSEs and MaxAEs
are “more different” than RMSEs and MAEs (see Figure
5, although Figure 4 may serve herein also), because the
correlation between the RMSE and MAE is stronger.
This implies that using the MAE criterion along with the
RMSE criterion is redundant, whereas the MaxAE crite-
rion can import additional information about forecasts.

Conclusion

Based on the analysis of forecasts for 2400 time series,
it is ascertained that the MAE criterion nearly replicates
information about the forecasting quality, which is direct-
ly drawn from the RMSE criterion. Therefore, the MAE
criterion is useless, whichever a group of criteria is, unless
the MAE criterion just substitutes the RMSE criterion.
Inasmuch as the MaxAE criterion can import additional
information about the forecasting quality, the best criteria
are RMSE and MaxAE.
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