
99

УДК 004.42	 DOi 10.30837/ bi.2023.1(99).14

Eduard Sheliemietiev1, Yuriy Novikov2, Oleksii Nazarov3, Nataliia Nazarova4

1 ХНУРЕ, м. Харків, Україна, eduard.sheliemietiev@nure.ua
2 ХНУРЕ, м. Харків, Україна, yuriy.novikov@nure.ua, ORCID iD: 0000-0003-1910-3256

3 ХНУРЕ, м. Харків, Україна, oleksii.nazarov1@nure.ua, ORCID iD: 0000-0001-8682-5000
4 ХНУРЕ, м. Харків, Україна, nataliia.nazarova@nure.ua, ORCID iD: 0009-0007-7816-7088

INVESTIGATE METHODS FOR SMOOTH TRANSITIONS BETWEEN LEVELS
OF DETAIL FOR EFFECTIVE VISUALIZATION OF 3D SPACES

The object of study is 3D-rendering. The subject of study is providing smooth transitions between LOD models.
The purpose of the work is to increase rendering performance of large 3D-scenes considering smooth transitions between
models with different levels of detail. The study examines existing algorithms for enabling smooth transitions between
levels of detail considering computational complexity and visual appeal of said methods.

3D-RENDERING, ALPHA-BLENDING, COMPUTER GRAPHICS, GEOMORPHING, LOD, NOISE-
BLENDING, POPPING EFFECT

Шелємєтьєв Е.О., Новіков Ю.С., Назаров О.С., Назарова Н.В. Дослідження методів плавних переходів між
рівнями деталізації для ефективної візуалізації 3D-просторів. Об'єктом дослідження є 3D-рендеринг. Предме-
том дослідження є процес забезпечення плавного переходу між LOD моделями. Метою роботи є підвищення
ефективності візуалізації великих 3D сцен із урахуванням плавності переходу між моделями з різним рівнем
деталізації. В ході роботи виконується дослідження існуючих алгоритмів плавного переходу між рівнями де-
талізації з точки зору обчислювальної складності та візуального вигляду. Результати дослідження дозволяють
прийняти рішення про застосування того чи іншого методу плавного переходу з урахуванням їх сильних та
слабких сторін.

3D-РЕНДЕРИНГ, LOD, АЛЬФА-ЗМІШУВАННЯ, ГЕОМОРФІНГ, ЕФЕКТ ПОППІНГУ, КОМП'ЮТЕРНА
ГРАФІКА, ШУМИ

Introduction

Levels of Detail (LOD) play an important role in im-
proving the performance of 3D graphics applications by
striking a balance between frame processing speed and user
experience. The essence of this optimization method is that
the further away from the virtual camera, the simpler the
3D models are drawn. This allows you to focus computing
resources on objects that are more important to the user.

Since the camera position is often dynamic, some ob-
jects need to be detailed directly in the user's field of view.
The problem arises of how to smoothly transition between
different levels of detail — replacing simplified models with
highly detailed ones and vice versa.

This paper explores methods for smoothing the transi-
tion between levels of detail to mitigate the notorious "pop-
ping" effect. This effect occurs when the transition between
LODs results in abrupt and noticeable changes in the level
of detail, disrupting the visual coherence of the scene.

By studying and comparing different approaches, this
research aims to provide valuable insights into effective
strategies for preventing or minimizing the popping effect,
which will ultimately help to balance performance and
optimal visual user experience.

Thus, the goal of the work is to improve the efficiency
of the visualization of large 3D scenes, taking into account
the smooth transition between models with different levels
of detail.

The subject of the research is 3D visualization (render-
ing).

The subject of the study is the process of ensuring
a smooth transition between LOD models.

To achieve this goal, it is necessary to solve the follow-
ing tasks

– To analyze existing methods and algorithms for
eliminating the popping effect when transitioning between
levels of detail;

– Study the factors that affect the efficiency of drawing
distant objects;

– Implement and compare methods for smooth transi-
tion between levels of detail;

– Draw conclusions about the appropriateness of using
a particular approach.

Based on the results obtained, it will be possible to draw
conclusions about

– Which algorithm should be used to ensure the highest
performance;

– Which algorithm provides the smoothest transition;
– To what extent it is generally advisable to use a smooth

transition between levels of detail compared to discrete
LODs.

This work is relevant now and will be in the future as
3D visualization becomes more widespread and has many
applications in the modern world.

1. Subject area analysis

Today, 3D visualization has many applications: video
games, graphic design, visual effects, virtual reality, cinema-
tography, visualization, virtual engineering, etc. These fields

Біоніка інтелекту. 2023. № 1 (99). С. 99–107	 хнуре

100

Eduard Sheliemietiev, Yuriy Novikov, Oleksii Nazarov, Nataliia Nazarova

require 3D graphics to look good (realistic or stylized) and to
be efficient. Often these two requirements are in conflict, and
application specialists must find a compromise between the
quality of the image and the cost of generating it. Real-time
3D rendering is particularly challenging from this perspective
when the cost of producing an image is expressed in terms
of frames per second (FPS).

Often, a very effective way to increase the speed of visu-
alization is to use 3D models with different levels of detail.
The essence of this method is to draw simpler geometry and
use faster shaders the further the object is from the camera.

For example, instead of rendering every detail of a very
distant glass skyscraper, you can draw a stretched cube with
a pre-created texture. With this approach, it's important to
balance the amount of detail with the distance to the viewer,
as you can either lose the effect of immersion in the 3D world
or get a very long frame generation time.

When working with LOD, you should also pay atten-
tion to the smooth transition between levels of detail as the
camera approaches the object. For example, if you decide to
draw distant trees using a square with a texture stretched over
it (the so-called billboard), when the virtual camera quickly
approaches the forest, you can see how the 2D image of the
tree suddenly turns into a 3D model (popping effect). This
phenomenon has a negative impact on the user experience,
as it reveals the falsity of the virtual world.

Several methods are used to eliminate the popping ef-
fect: LOD blending (smooth blending of two adjacent levels
of detail using transparency or noise) and geomorphing (cre-
ating additional intermediate states of the model by bringing
the geometry of one level of detail closer to another).

Although there are a number of methods available today,
each approach has its advantages and disadvantages, and it
is often necessary to find a balance that satisfies the require-
ments for performance and appearance.

2. Work Relevance

This work has significant relevance in the context of 3D
graphics and virtual environments. Its results solve a critical
problem that directly affects user experience and application
performance.

Modern applications and 3D models strive for ever-
increasing levels of detail. In the past, computers could draw
a relatively small number of 3D polygons, but in recent years,
computer-generated images (CGI) have become indistin-
guishable from real photographs. This is largely due to the
use of highly detailed models.

And although modern hardware is capable of drawing
large numbers of polygons, computing resources are not
unlimited (especially in the context of real-time 3D ren-
dering and on mobile platforms), so software developers
still have to make compromises. LOD is still a must-have
method for maintaining the illusion of continuity and op-
timal performance.

Users moving in virtual space often experience the "pop-
ping" effect, which negatively affects immersion. Choosing

the wrong method to smoothly transition between levels of
detail destroys the user experience, as the viewer's attention
is directed not to what the designer or developer intended,
but to the 3D object that is transitioning to a different level
of quality. By exploring different methods to prevent this
phenomenon, this paper aims to offer practical solutions
that can be applied in a wide range of applications: from
video games to architectural modeling and virtual reality.

In summary, the relevance of the research lies in its abil-
ity to improve the user experience in a variety of applications.
Whether it is games, simulations, or resource-constrained
platforms, the results of this research can positively impact
image accuracy, performance, and user experience.

3. Problem statement

In accordance with the identified problems, we describe
the task for research practice:

– Analyze existing methods and algorithms for elimi-
nating the popping effect when switching between levels of
detail;

– To study the factors influencing the efficiency of
rendering distant objects;

– Perform the software implementation of the studied
algorithms;

– Draw a conclusion about the appropriateness of ap-
plying a particular approach.

Based on the results obtained, it will be possible to draw
conclusions about

– Which algorithm should be used to ensure the highest
performance;

– Which algorithm provides the smoothest transition;
– To what extent it is generally advisable to use a smooth

transition between levels of detail compared to discrete
LODs.

Thus, the study will allow us to choose one or another
algorithm to ensure a smooth transition between levels of
detail, taking into account their strengths and weaknesses.

4. Justification of research methods and stages

The object of research is 3D visualization (rendering).
The subject of the research is the process of ensuring a

smooth transition between LOD models.
The goal of the research is to improve the efficiency of

the visualization of large 3D scenes, taking into account
the smooth transition between models with different levels
of detail.

The empirical scientific method "experiment" is used in
this research: during a series of experiments the parameters
of the selected algorithms for ensuring smooth transition
between levels of detail (the value of the popping effect and
performance) are determined.

Then the theoretical method of "analysis" will be used to
decompose the obtained results separately from each other.
As a result, it will be decided which algorithm is more suit-
able in a given situation and for what reasons.

101

INVESTIGATE METHODS FOR SMOOTH TRANSITIONS BETWEEN LEVELS OF DETAIL FOR EFFECTIVE VISUALIZATION OF 3D SPACES

This research consists of the following stages
1) Preparation of the study — definition of the purpose,

specification of the subject and object of the study, formula-
tion of the hypothesis and research methodology;

2) Experimental research and data processing — prepar-
ing and conducting experiments, processing the obtained
data;

3) Analysis of research results — drawing conclusions
about the feasibility of using certain algorithms for smooth
transition between levels of detail;

4) Evaluation of the application of the research results.

5. Development of formal mathematical model
of subject area

The study will compare the algorithms for ensuring a
smooth transition between LOD models by two factors:

– the time of image generation;
– the importance of the popping effect.
Each algorithm studied is characterized by the follow-

ing gray box mathematical model (see Figure 1): it is an
expression of the complexity of two adjacent levels of detail
between which a smooth transition is made (x1 and x2) and
the distance of the object from the camera (d), as well as
a random error ξ that we cannot control.

Fig. 1. Mathematical Model of the Gray Box for the Smooth

Transition between Levels of Detail Algorithm

The function f1(x1,x2,d) is a controlled parameter
that indicates the method of smooth transition between
the levels of detail under study. The result of the function is
the parameter z, which denotes a set of instructions to the
GPU to draw 2 adjacent levels of detail at a given distance
from the camera.

The function f2(z,ξ) denotes the environment that per-
forms the drawing (the operating system and the GPU). This
environment is uncontrolled and a black box. All we can do
with it is pass input commands and data, and the output is
the generated image.

Note that to simplify further calculations of the com-
plexity of the x1 and x2 detail levels, the number of polygons
in the model (triangles that form the object's edge) is taken
without regard to the position of their normal relative to
the camera (when using the back-face culling technique,
polygons that are not visible from the camera, such as the
back of a house, are cut off and do not participate in further
steps of the graphical pipeline).

In the experiment comparing image generation times,
y is the time (in milliseconds) to generate an image, and ξ
is a random measurement error.

In the experiment to evaluate the significance of the
popping effect, y is the difference between the reference im-
age (the original high-poly model) and the image generated
by the smooth transition algorithm between detail levels.

In this experiment, all random values (noise textures,
etc.) are pre-generated, so the result of the experiment is
completely deterministic (determined by x1, x2, d), and the
error value ξ is zero.

After conducting the experiments, it will be necessary to
conclude how well the algorithms meet certain criteria and
to give examples of situations in which it is advisable to use a
certain method of smooth transition between levels of detail.

6. Experimental methodology

To perform the experiments, we will create a software
that consists of the following functional modules:

1) a module to measure the performance of the algo-
rithms when displaying a large number of 3D models at
different distances from the camera;

2) a module for measuring the popping effect when
comparing the performance of the method under study with
a reference (high-poly model).

Algorithms for smooth transition between the levels of
detail to be studied:

– Alpha mixing;
– Mixing with noise;
– Geomorphing.
These methods are compared with rendering:
– The original high-poly model with no levels of detail;
– discrete levels of detail without smooth transition.
The experiment to measure the performance of the

smooth transition algorithms will measure the time required
to render a large number of models (50, 250, 500, 1,000, and
2,000 models) at different distances from the camera. The
number of objects should be large enough because modern
GPUs process large 3D scenes very quickly.

The objects are located along the x-axis in the range from
the beginning of the camera's visible range to the distance
required to activate the lowest level of detail at the same
interval, which is equal to (1):

	 dx = (w – camerax) / n,	 (1)

where dx is the interval at which objects are placed in the
scene, n is the number of objects, camerax is the camera
coordinate, and w is the distance of the minimum level of
detail.

Accordingly, the camera is oriented along the positive
x-axis.

Also, occlusion culling should be turned off because the
models overlap each other (if occlusion culling is turned on,
the objects in front will overlap the models behind, and the
latter will not be drawn).

As mentioned earlier, this experiment has an error ξ, so
the time measurement should be performed several times
(we assume that 3600 times is sufficient) and the average
value should be taken.

102

Since the experiment is performed on a modern mul-
tiprocessing operating system, we assume that the time
measurement errors are caused by other processes on the
computer, so the average time is the time of the algorithm.

The magnitude of the popping effect is measured as
follows:

1) The 3D model under study is placed on the scene at
the minimum distance from the camera, so that the maxi-
mum level of detail is initially displayed;

2) the object is moved at a constant distance along the
camera's line of sight, passing through all states of detail
levels;

3) after each movement, the resulting image is stored;
4) after reaching the lowest level of detail, the object is

gradually brought back in the same way;
5) Steps 1-4 are performed for the reference model and

the specified algorithm, and the absolute difference between
the pixel values of the images is found. The resulting image
has only one channel, which is interpreted as black (value
0) and white (value 1). Since the input images are multi-
channel (RGB), the difference is the arithmetic mean of
all channels;

6) for each difference image, the root mean square error
(RMSE) is calculated [1].

As a result, we get a single number — how much the image
generated by a particular method differs from the reference.

The image obtained in step 4 can be useful for visually
assessing the difference between the algorithms.

As a result of the experiment you will find
– The fastest and slowest algorithms;
– which algorithm has the most pronounced popping

effect.
Based on the results, it will be possible to draw conclu-

sions about
– Which algorithm should be used to ensure the highest

performance;
– Which algorithm provides the smoothest transition;
– the general advisability of using a smooth transition

between levels of detail versus discrete LODs.

7. Nature of Experimental Errors and Uncertainty

The measurement error is present only when performing
an experiment to evaluate the performance of algorithms
for smooth transition between levels of detail. Despite the
fact that the same set of data is passed to the program, the
processing time is different each time.

This is due to the fact that the application is not running
in a separate, isolated environment: many other processes
and threads are running in parallel on the same device.

Hardware and software caching, code interpretation,
and JIT compilation must also be taken into account. Be-
cause of this, the first experiment usually takes a little longer.
Therefore, in practice, before measuring the execution time
of a program, a so-called "warm-up" is performed (prefer-
ably with as many conditional transitions as possible). This

increases the chance that subsequent experiments will have
approximately the same runtime.

When calculating the size of the popping effect, opera-
tions are performed on floating point numbers (addition and
division operations). It is known that this introduces an error
in the resulting amount, but its relative value is very small and
does not matter when comparing large numbers. Therefore,
to simplify the experiment, its existence is allowed.

8. Alpha blending

One of the easiest methods to implement in software is
the smooth transition method called alpha blending (LOD
blending).

The essence of this method is to simultaneously display
two levels of detail that are mixed using the alpha channel
(transparency channel) according to the transition coeffi-
cient. This coefficient can take values from zero (the begin-
ning of the transition) to one (the end). Conventionally, the
method can be represented by the following formula (2):

	a result = (1 – k) * aprev + k * anext,	 (2)

where aresult — is the transparency of the resulting pixel on
the screen, aprev — is the transparency of the pixel of the
previous detail level (where the transition started), anext —
is the transparency of the next (target) detail level, k is the
transition coefficient.

An alpha channel value of one corresponds to a com-
pletely opaque pixel, and a value of zero corresponds to a
completely transparent (hidden) pixel.

As the virtual camera moves and reaches the distance
at which the transition should take place, the old model
gradually fades out and a new model gradually appears in
its place. When the transparency of the old model reaches
zero, the old model is not drawn to save resources.

Visually, the principle of alpha blending is shown in
Figure 2.

Fig. 2. Principle of alpha blending, transitioning
from a low quality model to a high quality model

When implementing alpha blending, it is important
to make the transition within a small distance range. For
example, if you need to make a transition at a distance of
1m, the start and end of the transition should be 0.95m and
1.05m respectively.

Alpha blending can be combined with billboards because
the virtual structure of the model is not important for this
method. In the context of LOD optimization, billboards
are usually used to improve the efficiency of visualizing the
farthest objects (the lowest quality level).

Billboards are two-dimensional planes or sets of con-
nected polygons that always face the camera, simulating a
three-dimensional object. This technique is used to more ef-
ficiently represent distant or small objects in a scene, reduce
computational load, and improve performance.

Eduard Sheliemietiev, Yuriy Novikov, Oleksii Nazarov, Nataliia Nazarova

103

The advantage of billboards is that only two triangles
are needed to represent a plane. Often, multiple planes are
combined to create the illusion of a large object in space
(tree leaves, bushes, clouds, etc.) [2].

This method of smooth transition has two major draw-
backs.

First, visualizing two models at the same time is compu-
tationally intensive. The main reason for using detail levels
is to reduce the number of polygons drawn simultaneously
to speed up the creation of the image on the screen, but the
transition in alpha blending requires drawing both models.
As a result, this method can sometimes be detrimental to
performance.

One way to deal with this drawback is to limit the num-
ber of objects that can transition between levels of detail at
the same time. This helps to avoid jumps in the number
of drawing function calls, which guarantees a more stable
number of frames per second. Keep in mind that delaying
the transition creates a delay that can be detrimental to the
user experience.

Second, alpha blending is very noticeable to the viewer
at close range: in certain situations, the model can look like
a translucent ghost.

Alpha blending works very well at a distance from the
camera, when adjacent layers of detail have a small number
of polygons and the visual effect of blending is not notice-
able enough.

9. Blending with noise

The smooth transition between levels of detail using
noise is very similar to alpha blending.

However, in this method, the transparency of each pixel
is a discrete value: either zero or one. In other words, this
algorithm uses either fully transparent or fully opaque pixels
to create a smooth transition.

Thus, the decision whether to display a particular pixel
with x and y coordinates of each model is made based on the
numerical value of a random variable (noise): if the value of
the transition coefficient k exceeds the threshold set by the
noise function, we use a pixel from the next level of detail,
otherwise — the previous one (3):

	a result = anext, if k > fnoise (x, y); 	

	 aresult = aprev, otherwise,	
(3)

where fnoise(x, y) – is a noise function that returns a value
between zero and one.

In computer graphics, noise is a pseudo-random value
(one-dimensional or multidimensional) used to add detail
to computer-generated images. Noise is very easy to com-
pute, and its applications are almost limitless: from cloud
and particulate visualization to ocean wave and tornado
simulation [3].

For better performance, noise is pre-computed and
stored as textures. This format is very convenient for GPUs
as they are specialized in sampling data from textures.

So for a smooth transition, we need a two-dimensional
noise value in the range of zero to one, stored in advance as
a two-dimensional texture. Its size doesn't need to be large:
the maximum size is the resolution of the generated image.
Even if you compute a texture that is too small, it can be
re-rendered, and this will minimize the user experience.

Noise texture sampling can be done at the processing
stage instead of separately for each model to be drawn. This
can speed up the algorithm and avoid noise repetition when
objects are too close together.

The most popular noise functions include the follow-
ing [4]:

a) white noise — returns pseudo-random values even for
input values that are very close to each other;

b) gradient noise — interpolates white noise values and
returns close noise values for close parameters;

c) pearlin noise — a subtype of gradient noise in which
visual details have the same size; it is used to make computer
graphics more realistic;

d) multilayer noise — uses a combination of gradient
noise with different levels of scale and weight; allows you
to get noise that has both high-frequency details and low-
frequency details;

e) voronoi noise — returns a noise value that looks like
a set of cells (or distances between cells).

A separate type of noise is dithering [5]. It is used to
give a random variable the desired stylistic appearance. An
example of a smooth transition using dithering is shown in
Figure 3.

Fig. 3. Principle of noise blending, transition
from low-quality model to high-quality model

The figure shows a useful feature of noise-based blend-
ing — at a certain value of the smooth transition threshold,
only one model can be drawn at a time. This helps to reduce
the load on the GPU. Of course, this trick is not suitable for
all types of models and environments.

Another advantage of this method over alpha blending is
that the designer has full control over the appearance of the
transition: you only need to replace the noise texture, and
you can make certain parts of the model transition faster than
others; you can set the transition direction (from bottom to
top, from edges to center, etc.).

Noise-based transitions between levels of detail have
the same drawbacks as alpha blending: the need to draw two
models at the same time and the obviousness of the transition
when viewed up close.

In practice, however, the noise-based transition is more
efficient in terms of performance [6].

The fact is that the most common way of working with
translucent models is much slower than drawing opaque
objects. Semi-transparent geometry often requires a sepa-
rate graphics pipeline step from opaque objects, where the

INVESTIGATE METHODS FOR SMOOTH TRANSITIONS BETWEEN LEVELS OF DETAIL FOR EFFECTIVE VISUALIZATION OF 3D SPACES

104

depth test is disabled and transparent polygons are sorted
from back to front [7].

The lack of a depth test causes every pixel to be redrawn
(overdraw), which is very detrimental to performance as the
GPU wastes time on a pixel that is not visible to the user
anyway.

Sorting can be quite expensive when the number of
model triangles is large, which is exactly the case when alpha
blending is used (especially for models of levels of detail close
to the virtual camera).

In practice, noise blending is often used for vegeta-
tion, which is essentially a reflection of random variables
in nature [8].

10. Geomorphing

Geomorphing is another method of smooth transition
between levels of detail. Its essence is to approximate a 3D
model to create intermediate transition states.

The main operations of geomorphing are vertex split-
ting (new vertices are added to the model as the quality of
the model increases) and edge collapse (some vertices are
removed as the quality of the model decreases) [9].

During the transition, not only the number of vertices
is changed, but also their position and other additional at-
tributes: normal, color, texture coordinates, etc. (see Figure
4), which prevents popping.

Fig. 4. The principle of geomorphing, going

from a low quality model to a high quality model

Most vertex attributes are linearly interpolated. Nor-
mals, which are 3-dimensional vectors with a length of one
unit, are modified using directional interpolation to preserve
their length.

When implementing geomorphing in software, it is
important to consider the situation when vertex splitting or
edge convolution is performed during an existing transition.
In other words, vertices should be able to perform animations
of transitions that overlap in time.

One way to optimize the geomorphing method is to
perform a smooth transition only for the visible part of the
model (view-dependent LOD control) [10]. This technique
is useful for large models (both in size and number of verti-
ces). The entire mesh is divided into parts (clusters) that have
their own memory buffers. The decision of which cluster to
draw on the screen is based on an optimization technique
called frustum culling.

The term "frustum" refers to a pyramid-shaped viewport
that covers the visible area of a 3D scene [11]. This truncated
pyramid is obtained by projecting the camera perspective
onto the near and far planes. Frustum culling selectively
renders only those objects that fall within this truncated
area, discarding those that are out of view.

By eliminating invisible objects early in the visualization
pipeline, we significantly reduce the computational load and
increase overall performance.

During the object removal process, each model in the
scene is checked on a slice to determine if it intersects or lies
outside the field of view. Several algorithms are used to quickly
determine if an object is potentially visible, such as checking
with spheres or Axis-Aligned Bounding Boxes (AABB). If an
object is completely invisible, it is excluded from the render-
ing process, eliminating unnecessary geometry, lighting, and
shadow calculations.

This optimization is especially useful in scenes with a
large number of objects, allowing you to focus rendering
resources on rendering only the models that are visible to
the camera.

The main difficulty in dividing the model into clusters is
ensuring a consistent and synchronized transition for vertices
that are on the boundary of two clusters. If this implementa-
tion detail is overlooked, there may be breaks along the edges
of the mesh parts, causing a "popping" effect in some cases.

The easiest way to implement this is to have the transi-
tion performed entirely on the CPU. A list of vertices that
perform a smooth transition can be stored in RAM, and their
attributes need to be updated every frame. However, it should
be noted that this approach is not optimal for a large number
of vertices, since after updating the data in CPU memory, it
must be sent to the GPU, which can cause some delay [12].

Another approach is to store the high and low quality
models in GPU memory. For a smooth transition, a weight
parameter (from zero to one) is used to interpolate vertex
parameters. Models of different quality can be preloaded
with priority. Obviously, this method requires more video
memory, but it significantly reduces the amount of data the
CPU sends to the graphics card for each frame.

The advantage of the geomorphing method is that only
one model is drawn at a time when switching between levels
of detail. Also, a smooth change in the model is less notice-
able to the viewer at any distance.

The disadvantages of this method are the complexity
of the implementation and the need to pay special atten-
tion to the placement of the 3D model in memory. Thus,
geomorphing becomes the key factor that determines how
3D rendering is performed.

11. Software implementation

The program for the study is developed using the C#
programming language, the .NET 6 platform, and the
MonoGame video game development framework (DirectX-
based drawing).

Each of the studied smooth transition methods is rep-
resented by a separate class implementing the common
ILodTransition interface. Each class receives models of
detail levels, the degree of transition, the object transfor-
mation matrix, and a reference to the graphics pipeline for
drawing.

Eduard Sheliemietiev, Yuriy Novikov, Oleksii Nazarov, Nataliia Nazarova

105

Smooth transitions between detail levels are performed
depending on the distance to the camera.

Alpha blending is implemented using a separate step
for translucent objects and double-pass rendering. Because
the last step of the Output-Merger (OM) graphics pipeline
is rendering, all pixels with a depth value less than the depth
of the z-buffer are not rendered at all. For this reason,
semitransparent objects are usually drawn separately from
opaque objects and then added to the final image with depth.

Double-pass rendering helps reduce the popping effect
on certain models. The depth buffer does not work correctly
when drawing translucent polygons of the same model, and
sometimes transparent triangles can be seen through each
other — resulting in regions of the model having different
alpha values. When mixing levels of detail, it is important
that all polygons of both models have the same transpar-
ency level, which is equal to one. If the transparency is less
than one, the models are transparent. If the transparency
is greater than one, the RGB color is usually different from
the original model color, which is very noticeable to the user.

Therefore, each level of detail is drawn twice during
the transition (a total of 4 draw calls). The first draw should
only capture the depth value. Any changes in the RGB
channels should be ignored. At this stage, a very simplified
pixel shader is used that returns a simple color. This is done
to avoid wasting time calculating the light and color of the
pixels. In the second stage of drawing the model, the values
of the RGBA channels are recorded based on the mixing
factor (formula 4.1). Before that, you must disable writing
to the z-buffer and leave it read-only. Before drawing the
next model, the depth buffer must be cleared, otherwise
the pixels of the second model will be discarded due to the
depth remaining in memory:

private void DrawTransparentModelDoublePass(
 LodLevel lod, GraphicsDevice graphicsDevice, float alpha)
{
 graphicsDevice.Clear(
 ClearOptions.DepthBuffer, Color.Transparent, 1f, 0);
 graphicsDevice.DepthStencilState = DepthStencilState.
Default;
 graphicsDevice.BlendState = this.blendDepthOnly;
 this.mainMaterial.AlphaPass.Apply();
 foreach (var part in lod.Mesh.MeshParts) {
 graphicsDevice.SetVertexBuffer(part.VertexBuffer);
 graphicsDevice.Indices = part.IndexBuffer;
 graphicsDevice.DrawIndexedPrimitives(
 PrimitiveType.TriangleList,
 part.VertexOffset, part.StartIndex, part.PrimitiveCount);
 }
 using var bs = new BlendState {
 ColorSourceBlend = Blend.BlendFactor,
 ColorDestinationBlend = Blend.InverseBlendFactor,
 AlphaSourceBlend = Blend.BlendFactor,
 AlphaDestinationBlend = Blend.One,

 BlendFactor = new Color(alpha, alpha, alpha, alpha),
 };
 graphicsDevice.BlendState = bs;
graphicsDevice.DepthStencilState=DepthStencilState.Depth
Read;
 this.mainMaterial.MainPass.Apply();
 foreach (var part in lod.Mesh.MeshParts) {
 graphicsDevice.SetVertexBuffer(part.VertexBuffer);
 graphicsDevice.Indices = part.IndexBuffer;
 graphicsDevice.DrawIndexedPrimitives(
 PrimitiveType.TriangleList, part.VertexOffset,
 part.StartIndex, part.PrimitiveCount);
 }
}

The noise-based smooth transition implementation
uses the built-in HLSL clip function to discard a given pixel
from further processing. Such a pixel is not written to either
the color texture or the depth buffer. This greatly simplifies
image rendering, since you only need to draw models once,
and you don't need a separate step for transparent objects.
The rules by which each pixel is gradually cut off or appears
are loaded as a 16x16 black and white texture.

Smooth transition based on geomorphing is implement-
ed on the GPU. This helps to reduce the memory bus load,
since the pre-prepared smooth transition mesh is loaded
into video memory only once, and further interpolation
between vertex attributes is performed in the vertex shader
using the progress variable:

MainVertexShaderOutput GeomorphVS(
 in GeomorphVertexShaderInput input) {
	 MainVertexShaderOutput output;
	 float3 avgPos = lerp(
 input.StartPosition, input.EndPosition, Progress);
	 float3 normal = lerp(
 input.StartNormal, input.EndNormal, Progress);
	 output.Position = mul(float4(avgPos, 1.0),
 WorldViewProjection);
	 output.Normal = normalize(normal);
	 return output;
}

The geomorphic feature set is built by finding the clos-
est vertices between high- and low-quality models. Since
3D models often have vertices with the same positions but
different additional attributes (normal, UV coordinates,
etc.), a simple distance between vertex coordinates is not
sufficient: the distance metric must also take into account
normal vectors. If you ignore this property, triangles may
have incorrect illumination and color during the transition,
which negatively affects the smoothness of the transition.

The geomorphic mesh is stored in the cache using the
Least Recently Used (LRU) strategy. When a transition is
generated based on two models, it is added to the cache,

INVESTIGATE METHODS FOR SMOOTH TRANSITIONS BETWEEN LEVELS OF DETAIL FOR EFFECTIVE VISUALIZATION OF 3D SPACES

106

which allows it to be reused both during the next drawing
call and during the same frame.

Creating a mesh is a slow operation for models with a
large number of vertices. The slowest part is the calculation
of the nearest vertices. Unfortunately, even with the use of
parallelization, the delay in generation is quite noticeable.
In practice, it is suggested to pre-calculate all the nearest
vertices at the compilation stage of the program and just read
them from the file. Another method is to create the model
in the background thread and display it as soon as it is ready.
In the software implementation under study, the delay is
not critical, but it is taken into account when conducting
experiments.

Analyzing smooth transition metrics
Let's measure the performance of discrete and smooth

transition algorithms. The computer on which the measure-
ments are performed has the following characteristics:

– Windows 10;
– Intel(R) Core(TM) i5-8250U 1.60GHz CPU;
– 8 GB OF RAM;
– NVIDIA GeForce MX250 GPU;
– 2 GB VRAM.
The resolution of the drawing window is 800x600 pixels.
The average time for drawing 3D space as a function of

the number of models is shown in Figure 5.
It can be seen that the slowest algorithm for a relatively

small number of objects (50-500 models) is alpha blending.
However, the running time of this method is linear over
the range studied, making it the fastest method for smooth
transitions when visualizing 1000-2000 models.

Fig. 5. Comparison of drawing times for smooth transition ethods

Geomorphing and noise blending have approximately
the same runtime, which increases exponentially with the
number of objects. Using the Windows Task Manager, run-
ning these methods on a large amount of data will load the
GPU to 100% and the CPU to about 8%. It can be assumed
that for a given hardware and software configuration, the
GPU is the bottleneck for these methods.

The discrete transition between detail levels is the fast-
est. Let's analyze the magnitude of the popping effect for
the studied algorithms for transitioning between levels of
detail (see Figure 6).

Fig. 6. Comparison of Popping Effect Levels

The figure shows that for the Stanford rabbit model

under study, alpha blending is the best method for smooth

transition. Noise-based transition and geomorphing have

approximately the same amount of popping. It should be

noted, however, that all of the algorithms studied are sig-

nificantly smoother than discrete transitions.

Based on the results of the study, the following conclu-

sions can be drawn about the feasibility of using smooth

transition methods for the 3D model under study:

a) Alpha blending, although it gives the best visual ap-

pearance, is the slowest method in 3D spaces with small

and medium number of objects. Alpha blending is the most

efficient transition method when you need to display a tran-

sition for many objects at once;

b) Noise-based transition has an average level of per-

formance, does not require much computing power for

preparation, but is acceptable for drawing a limited number

of models at the same time;

c) Geomorphing has about the same performance as

noise-based blending, but it has one drawback: it requires

the creation of a 3D mesh for a smooth transition.

Further research

The following areas of activity can be identified for

further research on smooth transition methods:

– to study the work of the algorithms on a larger number

of 3D models of different categories (architecture, land-

scape, vegetation, transportation, interiors, people, etc.);

– determine the effectiveness of each algorithm as a

function of distance from the viewer;

– extend the metrics for evaluating the effect of popping

(distances in CIELAB color space, graphical representation

of popping, consideration of the statistical significance of

the measurement);

– explore the possibility of automatically recommending

transition methods depending on the type of model and the

number of objects in 3D space to obtain the most effective

values of the factors under study;

– to investigate the use of additional visual effects in

combination with levels of detail (textures, normals, reflec-

tions, backlighting, ray tracing, etc.).

Eduard Sheliemietiev, Yuriy Novikov, Oleksii Nazarov, Nataliia Nazarova

107

Conclusions

During the research internship, the students studied
methods for smooth transitions between levels of detail
(LOD) for three-dimensional graphics.

The focus was on finding a balance between perfor-
mance and good-looking transitions. In particular, the
research focused on eliminating the "popping" effect that
disrupts visual consistency during transitions between
LODs. A comprehensive analysis of existing methods and
algorithms provided valuable information on strategies to
prevent and minimize this effect.

It was found that alpha blending is the easiest method
to implement for smooth transitions and reduces the pop-
ping effect the most, but is the slowest for a small number
of models.

Noise blending has an average level of performance and
a sufficient level of visual consistency in the image. This
method also allows the most creative freedom in rendering
objects and does not require any model preparation.

Geomorphing has the same performance and image
consistency characteristics, but it is relatively difficult to
implement and requires extensive calculations to prepare a
3D model for blending.

In practice, the results of this study are expected to help
select algorithms that offer an optimal balance between com-
putational efficiency and good looks, taking into account
different circumstances. As 3D visualization continues to
grow in popularity in a variety of applications, this work
remains relevant and provides insights that can be used in
future developments in the field.

References

[1]	 Jim Frost. Root Mean Square Error (RMSE). Statistics by
Jim. URL: https://statisticsbyjim.com/regression/ root-
mean-square-error-rmse/

[2]	 Anton L. Fuhrmann, Eike Umlauf, Stephan Mantler. Extreme
Model Simplification for Forest Rendering. ResearchGate.
URL: https://www.researchgate.net/ publication/221314842_
Extreme_Model_Simplification_ for_Forest_Rendering

[3]	 State of the Art in Procedural Noise Functions. [A. Lagae,
S. Lefebvre, R. Cook, DeRose, G. Drettakis, D.S. Ebert,

J.P. Lewis, K. Perlin, M. Zwicker]. URL: https://graphics.
cs.kuleuven.be/publications/LLCDDELPZ10STARPNF/

[4]	 Noise Functions. Ronja's Shader Tutorials. URL: https://
www.ronja-tutorials.com/noise.html

[5]	 The Importance of Dithering Technique Revisited with
Biomedical Images – A Survey. [Liu Yue, P. Ganesan,
B.S. Sathish, C. Manikandan, A. Niranjan, V. Elamaran,
Ahmed Faeq Hussein]. ResearchGate. URL: https://www.
researchgate.net/publication/329763540_The_Importance_
of_Dithering_Technique_Revisited_With_Biomedical_
Images-A_Survey

[6]	 Nithin Pranesh. Smoother LOD Transitions in Cesium for
Unreal with Dithered Opacity Masking. 20.10.2022. Cesium.
URL: https://cesium.com/blog/ 2022/10/20/smoother-lod-
transitions-in-cesium-for-unreal/

[7]	 Transparency (or Translucency) Rendering. Nvidia Developer.
URL: https://developer.nvidia.com/content/ transparency-
or-translucency-rendering

[8]	 Benny Onrust, Rafael Bidarr, Robert Rooseboom, Johan
van de Koppel. Procedural generation and interactive web
visualization of natural environments. The 20th International
Conference. ResearchGate. URL: https://www.researchgate.
net/publication/ 300490331_Procedural_generation_and_
interactive_ web_visualization_of_natural_environments

[9]	 Hugues Hoppe. Smooth View-Dependent Level-of-Detail
Control and its Application to Terrain Rendering. Microsoft
Research. URL: https://hhoppe.com/svdlod.pdf

[10]	Pedro V. Sander, Jason L. Mitchell. Progressive Buffers:
View-dependent Geometry and Texture LOD Rendering.
Advanced Real-Time Rendering in 3D Graphics and Games.
URL: https://advances. realtimerendering.com/s2006/
Chapter1-Out-of-Core_ Rendering_of_Large_Meshes_
with_Progressive_Buffers.pdf

[11]	Eun-Seok Lee, Byeong-Seok Shin. Vertex Chunk-Based
Object Culling Method for Rreal-Time Rendering in
Metaverse. 09.07.2023. MDPI. URL: https://www.mdpi.
com/2079-9292/12/12/2601

[12]	Data Transfer Matters for GPU Computing. [Yusuke Fujii,
Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, Masato
Edahiro]. ResearchGate. URL: https://www.researchgate.
net/publication/269197419_Data_Transfer_Matters_for_
GPU_Computing

The article was delivered to editorial stuff on the 26.05.2023

INVESTIGATE METHODS FOR SMOOTH TRANSITIONS BETWEEN LEVELS OF DETAIL FOR EFFECTIVE VISUALIZATION OF 3D SPACES

