
88

УДК 004.42	 DOi 10.30837/ bi.2023.1(99).13

Maksym Shulha1, Dmytro Matvieiev2, Oleksii Nazarov3, Nataliia Nazarova4

1 ХНУРЕ, м. Харків, Україна, maksym.shulha@nure.ua
2 ХНУРЕ, м. Харків, Україна, dmytro.matvieiev@nure.ua,

ORCID iD: 0000-0002-0622-8159
3 ХНУРЕ, м. Харків, Україна, Ukraine, oleksii.nazarov1@nure.ua

, ORCID iD: 0000-0001-8682-5000
4 ХНУРЕ, м. Харків, Україна, nataliia.nazarova@nure.ua,

ORCID iD: 0009-0007-7816-7088

RESEARCHED METHODS FOR SIMPLIFYING AND OPTIMIZING PARTICLES
FOR PORTABLE GAMING DEVICES

The object of the research is particle simulation systems and their modules. The aim of the work is to conduct a
study of the performance of particle simulation systems and the optimization process to improve it. The methods of de-
velopment and design are the analysis of the problem area of research, the choice of a particle simulation system based
on their comparison for further study and optimization. As a result of work, a game simulation project was developed to
demonstrate the effectiveness of the proposed optimization methods.

VERTICES, OPTIMIZATION, SIMULATION, PARTICLES SYSTEMS, SHADERS, INSTRUCTIONS
COUNT, UNREAL ENGINE

Шульга М.В., Матвєєв Д.І., Назаров О.С., Назарова Н.В. Дослідження методів спрощення та оптимізації
частинок для портативних ігрових пристроїв. Об’єктом дослідження є системи симуляції часток та їх модулі.
Метою роботи є проведення дослідження продуктивності систем симуляції часток та процес оптимізації для
її покращення. Методами розробки та проектування є аналіз проблемної області дослідження, вибір системи
симуляції часток на основі їх порівняння для подальшого вивчення та оптимізації. У результаті роботи було
розроблено ігровий проект-симуляцію для демонстрації ефективності запропонованих методів оптимізації.

ВЕРТЕКСИ, ОПТИМІЗАЦІЯ, СИМУЛЯЦІЯ, СИСТЕМИ ЧАСТОК, ШЕЙДЕРИ, INSTRUCTIONS
COUNT, UNREAL ENGINE

Introduction

Visual effects (VFX) are a technology that allows you
to create realistic effects such as fire, smoke, water, sparks,
and more using a large number of small objects called par-
ticles. These particles can have different properties, such
as color, size, shape, speed, direction, etc., and interact
with each other and the environment according to cer-
tain rules. Particle simulation systems are widely used in
modern game engines to create immersive visual effects
that enhance the immersion and atmosphere of the game.

The purpose of the study is to analyze and compare the
methods of using particle simulation systems in modern
game engines such as Unity, Unreal Engine, CryEngine
and the possibility of using them in portable devices.

The study focuses on the processes of creating, opti-
mizing and integrating VFX in game projects, as well as
their impact on the graphical quality, performance and
immersiveness of the game.

The study aims to identify the advantages and disad-
vantages of different approaches to VFX implementation
and provide recommendations for their effective use.

In this article, we will review the basic principles and
methods of particle simulation systems, as well as ex-
amples of their application in various game genres. We
will also analyze the advantages and disadvantages of this
technology, as well as the possibilities for its further devel-
opment and improvement.

1. Description of subject area

The proliferation of tools and technologies for MPE
development is reflected in the computer game industry
[1], interactive cinema, and augmented and virtual real-
ity applications. As development tools evolve, the need
for dynamic model optimization comes to the fore. This
is due to the fact that the simplification of the process of
developing rather complex models has led to a decrease in
developers' interest in multifactor optimization of existing
models - it is easier to build a new model than to optimize
an existing one.

The optimization process can be applied to almost all
elements of modern engines. This is due to the fact that
the engines provide as much functionality as possible to
ensure compliance in the applications they are designed
for. For applications such as the film industry or simula-
tions, where models do not run in real time, optimiza-
tion is not critical because it only affects the comfort of
working with the project, not the final result, which can
go through the rendering process at any time. The main
area where optimization is critical is in real-time software
applications. For this class of applications, the main re-
quirement for the optimization process is to minimize op-
timization-related delays and maximize synchronization
of all used engine elements, since they can run on dif-
ferent hardware and, in the future, be scaled to new por-
table devices. This fact attracts special attention because

Інформаційні технології. Оптимізація та графічні рішення

89

mobility is developing quite actively, and therefore opti-
mizing existing applications for new types of mobile de-
vices becomes more important than ever.

The optimization process remains complex and situ-
ational in its parameters and includes many criteria that
require an individual approach. Modern engines consist
of modules that work together and can influence each
other. Due to this fact, it is often impossible to disable
them: for example, games adapted for virtual reality rarely
use a standard interface module, which requires a lot of
resources for initialization and computation. Also, the
development team often does not include experienced
specialists who can understand the structure of the engine
code and disable a particular module in a way that does
not affect other modules. In some engines, such as Unity,
the engine code is not editable, requiring optimization at
a higher level.

2. Statement of research problem

The article highlights the following tasks to be consid-
ered:

1)	 analysis and comparison of current tools for devel-
oping particle simulation systems for the game industry;

2)	 to compare the gaming industry with the film in-
dustry in terms of the creation and use of VFX;

3)	 review the theoretical foundations of particles and
their classification according to various criteria;

4)	 analysis of existing methods for simplifying and
optimizing particles for handheld gaming devices, such
as reducing the number of particles, changing their shape
and size, using textures or shaders, adapting to camera
movement;

5)	 select software for modeling and visualizing par-
ticles using the selected simplification and optimization
methods;

6)	 conclusions about the advantages and disadvan-
tages of the considered methods of particle simplification
and optimization for portable gaming devices.

This set of questions should be sufficient for a first
overview of the industry, the VFX development tools [2]
and the problems to be solved. The results will also help to
adjust the process of analyzing the results and the meth-
ods that will be used to solve problems with the optimiza-
tion of particle simulation systems.

3. Research Facilities

The game engines listed in the introduction will be
used for the research. In the course of this research, we
will analyze the existing modern engines, review their pros
and cons, and then choose the one that suits us best.

Since we are focusing on portable devices, the most
important parameter of these engines will be the ability to
build projects for mobile devices using modern libraries.

Analyzing optimization for consoles is quite com-
plicated, because it requires the presence of so-called

"devkits" - consoles sent by their owners for development.
This is impossible for the learning process. There are also
personal computers, but the variability of their hardware is
very large, which makes it impossible to adequately evalu-
ate the results of optimization, as video cards of different
generations have fundamental differences.

That's why a personal computer will be used to test in-
termediate results to speed up the analysis process to ob-
tain relative results and formulate optimization methods.
Further testing will be done on a modern smartphone, as
this platform is available and meets the hardware limita-
tions that can reflect the effectiveness of the optimization
methods found.

4. Review and compare modern game engines

Choosing the right game engine is by far the most im-
portant decision a game developer has to make to get the
best results from their product. The first puzzle a game de-
veloper has to solve when creating a game is which game
engine to use to get the best user experience. A game en-
gine helps to create not only classic arcade games [3] like
Ping, Tetris, Snake, but also innovative and advanced lev-
eling games like GTA and Assassin's Creed. Every game
developer has heard of some incredible game engines like
Unreal Engine, CryEngine and Unity3d. These are some
of the most popular and leading game engines for creating
advanced games today. Each of these 3 game engines has
its own qualities and potential. We need to be clear about
the nature of our project, for example, license budget,
game platform, dimensions (2D or 3D), and so on. So,
your goal should be clear before choosing the best game
engine 2023 for our project.

Unity has many contributors in its community who
can help us with the project right away. Another feature
that makes it stand out as one of the best 3D game engines
in 2023 is its ability to support a number of file formats
used in leading 3D programs, including 3D Max, Blender,
CINEMA, Maya, Softimage, and many others. In addi-
tion, game developers have access to more than 15,000
free and paid 3D models, audio, animations, editor ex-
tensions, materials, scripts, and shaders for use in game
development. Unity 3D uses C# or JavaScript, which
is more desirable than C++ because you don't have the
hassle of switching from Java to C# compared to C++.
Nevertheless, Unity 3D has a simple and fast interface
and is light enough to run even on Windows XP with
Service Pack 2 (SP2).

Second on the list is Unreal Engine 4, which is the
latest engine released by one of the largest American
video game and software development companies, Epic
Games. Unreal Engine 4 is the successor of the Unreal
Development Kit, commonly known as UDK in the gam-
ing world. Unreal Engine 4 offers incredible graphics
that add a realistic touch to the gaming experience with
features such as advanced dynamic lighting. What makes

Біоніка інтелекту. 2023. № 1 (99). С. 88–98	 хнуре

90

Maksym Shulha, Dmytro Matvieiev, Oleksii Nazarov, Nataliia Nazarova

this game engine even more amazing is its new particle
system, which has the ability to handle up to a million
particles in a single scene.

In addition, UE4 is completely free to use, but you
must pay a royalty of 5% of the money you make from
your Unreal Engine 4 games. In short, Epic Games gets
5% of everything you make, whether it's in-app purchas-
es, in-game advertising, or money you charge users to buy
your game. However, the creators of Unreal Engine 4 al-
low developers to use the full version of Unreal Engine 4
for free if the revenue you make from your game is up to
$3,000 per quarter.

In addition, Unreal Engine 4 uses Blueprint Visual
Scripting technology, which allows you to create games
using Blueprint. However, such games have some limita-
tions. Among other things, the bad thing about this engine
is that it is not capable of developing games for last gen-
eration consoles.

Finally on our list of the best game engines in 2023 is
CryEngine. First introduced by major development com-
pany Crytek in the first Far Cry game, CryEngine is un-
doubtedly one of the most powerful and dominant game
engines we have today. What makes CryEngine worthy of
the list is its graphical capabilities, which eclipse those of
Unity and are equivalent to what Unreal has. Although
CryEngine is a heavy and powerful game engine, it takes
a little time for the user to be able to use this platform ef-
fectively and is a little harder to understand for beginners
who have not used other game engines before.

The CryEngine supports virtual reality and has amaz-
ing visual effects, including a three-dimensional fog and
cloud visualization system that gives clouds a full 3D spa-
tial visualization and realistic rendering for fog and weath-
er effects. Furthermore, the best part of choosing the
CryEngine platform for game development is that it does
not require its users to pay royalties during game devel-
opment. However, to get access to CryEngine, you need
to pay a fixed amount, namely $9.90/- per month. In
addition, CryEngine has a dedicated Q&A forum called
CryEngine Answers that clears all your doubts and queries
and helps you to have the best experience.

While comparing Unreal, Unity and CryEngine, we
came across the best features that these game engines of-
fer us. Comparing the performance of Unity and Unreal,
we realized that Unity is a better platform for developing
mobile and 2D/3D games, while Unreal is best suited
for developing highly graphical and photorealistic games.
This is the main difference between Unreal and Unity.

CryEngine, on the other hand, also has the ability
to create games with high graphics. Furthermore, when
comparing CryEngine to Unreal 2023 on the scale of
providing next-generation platform features with a more
attractive pricing model, CryEngine undoubtedly outper-
forms Unreal with its cost-effective structure. However,
for a beginner, when it comes to CryEngine 5 vs. Unreal

Engine 4 based on lightness and minimalism, despite the
amazing features that CryEngine has, Unreal Engine 4
and Unity are definitely worth a try.

At the end of this analysis, we came to the conclusion
that the most versatile and high-quality particle simula-
tion system is implemented in Unreal Engine. Moreover,
both systems of this engine have developed tools for op-
timization, not only for the creation of these particles.
Therefore, further analysis should be done on this engine.

5. Industry analysis and Unreal Engine 4-5's place in it

The late 90's saw a monumental development in per-
sonal computers and the games that could be played on
them. Graphics improved rapidly, and although ridiculous
by today's standards, the development of 3D first-person
graphics made video games much more immersive. The
Internet was rapidly spreading to consumers, making it
easier to participate in online games, join discussions on
gaming forums, and even learn how to program games
yourself. And the games released during this time are titles
we still talk about with reverence: Doom, Sim City, Duke
Nukem, Half-Life, StarCraft, Myst, and many others (see
Fig. 1).

Fig. 1. Doom

But Unreal Tournament was in a league of its own: fast
paced, large maps, and AI computer opponents that, for
the first time, actually seemed intelligent. A community
of players began to grow around the game, modifying it,
making it their own, and sharing their creations with the
community. All of this happened thanks to a game devel-
opment company with an extremely bright future and the
software they created called Unreal Engine.

Founded in 1991, Epic Games is one of the few soft-
ware company success stories that has earned a rightful
place in gaming history. Their first few games were com-
mercially successful, but what really put them on the
map came at the end of the millennium when they re-
leased Unreal [4] in 1998, followed by its sequel, Unreal
Tournament, the following year.

The game's gameplay, graphics, and features set it apart
from many other first-person shooters on the market. But

91

RESEARCHED METHODS FOR SIMPLIFYING AND OPTIMIZING PARTICLES FOR PORTABLE GAMING DEVICES

beyond the game itself, Epic Games made a decision that
made the game legendary. They decided to ship the game
with the same tool - the Unreal Editor - that is used to
create levels and gameplay, allowing players to customize
the game and make it their own. It's one of many game
engines developed over the years, but it's far from the most
successful or widely used.

"If you think of a technology that has stood the test
of time, Unreal Engine is one of the biggest," says Jacob
Feldman, a software and rendering solutions engineer
at CoreWeave who moonlights as an authorized Unreal
Engine instructor. "It has over 20 years of code, so it's a
significant, complex product."

Realizing that they had a winner with the Unreal
Engine, the Epic team began licensing the software so that
other developers could build their own games on top of it.
Fast forward to 2017, when the studio released Fortnite, a
cultural sensation that would further cement the legacy of
Epic and the Unreal Engine. More recently, the Unreal
Engine has played a major role in another cultural mo-
ment that has propelled the tool into an entirely new in-
dustry: movie production [5] (see Fig. 2).

Fig. 2. Using UE4 in cinema

In 2019, Disney released the award-winning series The
Mandalorian as part of the lineup for its new streaming
service, Disney+. The show became an instant hit, con-
tinuing the long history of Star Wars productions that have
pushed the technological boundaries of the film industry.
"The Mandalorian" demonstrated a giant leap forward in
set design by using real-time set rendering with the Unreal
Engine, effectively making green screen obsolete.

"Unreal made a leap into broader industries like film
after Fortnite came out," says Feldman. "It became clear
that a game engine like Unreal, designed for flexibility,
performance, and visual quality, had more applications
than just gaming. This became especially clear as more
powerful hardware began to enable things like real-time
ray tracing and other visual effects that were simply not
possible 5-10 years ago. The visual effects industry has
some of the most stringent requirements of any visual me-
dium, so Epic has made a serious commitment to sup-
porting the kinds of tools that VFX studios need.

Filmmakers have always found ways to trick the audi-
ence's eyes into thinking they are seeing something larger
than what is there - what the industry calls "set exten-
sion. In the early days of Hollywood, this involved literally

drawing scenes that were then seamlessly integrated into
the set to create the effect of infinite space.

Later, green-screen technology became the preferred
method for creating large worlds. However, there are some
significant problems with this method. It can be difficult
for actors and crew on set to perform convincingly against
an empty, bright green background. The actors cannot see
the world around them (see Fig. 3) and therefore cannot
react to it in a way that is convincing to the viewer.

But what if there was a way to create large worlds on
command that actors could see right in front of them? It
would be almost like throwing those actors into a video
game and having them perform in that world, with all the
views available to their own eyes.

Fig. 3. Shooting a movie

Mandalorian creator Jon Favreau approached the
team at Epic Games to see if they could help him do this,
essentially immersing his actors in a video game. Using
massive high-definition LED screens surrounding their
set, the Mandalorian team took the old Hollywood con-
cept of painted sets and brought it into the twenty-first
century. Now these painted sets were living, breathing
environments with dynamic lighting and movement. The
actors could see them and react to them. The physical ele-
ments in the foreground blend seamlessly into the virtual
background.

But it gets even better-using game engine technology,
you can tie camera movement to the background (see
Fig. 4), allowing it to change with the camera to perfectly
match the movements and provide smooth parallax move-
ment that is indistinguishable from the real shot.

Fig. 4. The process of filming «Mandalorian»

92

In essence, they created the real-time graphics that
underpin movie production. There is no need to clean up
in post-production; these effects are done in the camera
in real time.

"It's a huge help for the actors and the crew to be able
to see their surroundings as they happen," says Feldman.
"Today, an actor has to imagine what is happening around
them on a green screen. This advancement allows them
to see it."

In addition to making life easier for the actors, the
real-time environment also makes the work of the post-
production team infinitely less stressful. On the green
screen, reflection is a constant battle. Any shiny material
will reflect the green environment and ruin the VFX ef-
fect. These reflections must be removed, and then virtual
light must be added to the tiny reflections in glasses, hel-
mets, or pieces of metal in the environment. Real-time
environments eliminate all of this because the reflections
captured by the camera reflect the world as it should be
in the story.

Epic Games took the wraps off its latest game engine,
Unreal Engine 5, and pretty much broke the gaming-in-
terested part of the Internet. Running on the PlayStation
5 developer hardware version, the results uploaded to
Vimeo looked stunning at first, but when you realized they
were real-time gameplay footage, they were truly impres-
sive.

The visual quality is virtually unmatched by anything
other than today's high-end pre-processed visual effects,
with an incredible level of detail and truly photorealistic
lighting [6]. What's even better, of course, is that the news
about UE5 has lit up the broadcast graphics, movie ef-
fects, virtual studio, and pretty much anywhere else that
high quality visual effects are used.

While other engines like Unity are available, Epic has
done a nice job of combining a leading feature set with
ease of use and a business model that encourages the use
of UE in other software. For example, any game develop-
er using Unreal commercially pays no licensing fees until
gross software revenues reach $1 million (recently raised
from $50,000), and this has helped to drive its widespread
integration across a range of technologies. For non-game
developers, it is 100% royalty free.

Its use in the graphics stack is similar to how connec-
tivity to the IT industry as a whole has accelerated devel-
opment in the broadcast sector; it allows a relatively small
industry to leverage the development efforts of a much
larger one, and the speed of change we're seeing as a re-
sult is impressive.

"When the new Unreal Engine 5 comes out, you
won't be able to tell what's real and what's not," said Phil
Ventre, vice president of sports and broadcast at Ncam
Technologies. "The integration of game engines is demo
cratizing the way companies use AR and VR, and it won't
just be a tier-one technology for broadcasters in the future."

While the new demo was created in part to showcase
some of the very smart new technologies in the upcoming
PS5, such as the literally game-changing M.2 SSD, UE5
showcases some new technologies that are dramatically
moving the goalposts for real-time CG work. Two in par-
ticular are worth mentioning: Nanite and Lumen.

Nanite is a new virtualized geometry [7] of micro
polygons that essentially allows artists to create as much
geometric detail as they want. It's translatable and scalable
in real time, which is important to consider when you're
planning an engine that will run on everything down to a
smartphone (see Fig. 5).

Then there is Lumen. This is a fully dynamic global
lighting system that responds instantly to changes in scene
and lighting and is part of the secret to why the game's
graphics look so good on a console. It's capable of repro-
ducing diffuse bounce reflections with infinite bounce
and indirect specular reflections in what Epic calls "vast,
detailed environments on scales from kilometers to mil-
limeters. It's also adaptable: Punch a hole in a wall and
the scene will change to accommodate the light coming in
through the hole.

Fig. 5. Demo scene on UE5

"The ability to light and render hundreds of millions of
polygons in real time is a quantum shift that will change
the way filmmakers interact with the images they create,"
said Miles Perkins, business development manager at Epic
Games. "These new technologies will allow creatives to
see the fullness of their vision without having to separate
different parts of their shots, viewing animation separately
from lighting, separately from environments and effects.
Everything will be right in front of them, fully control-
lable. Filmmakers will be able to compose and light shots
in real time, whether they are physical, virtual, or a com-
bination of the two."

Perhaps one of the key points here is that the Unreal
Engine, currently running at version 4.25, is already very
good.

"We are currently using Unreal Engine 4 extensively in
both pre-production and virtual production," said Hugh
MacDonald, director of technology innovation at Nviz.
"For pre-production, the real-time nature of UE4 means
we can get incredibly high-quality images with minimal
rendering time. We're also using it for virtual production,

Maksym Shulha, Dmytro Matvieiev, Oleksii Nazarov, Nataliia Nazarova

93

which allows for better integration than we could have
done in the past.

Nviz uses Unreal in two main tools that illustrate how
it is being used for pre-production work in the industry
and where it can go. The virtual camera system allows for
virtual scouting of pre-production environments and al-
lows directors and cinematographers to get hands-on ex-
perience with the camera, while the simulcast toolkit is
tightly integrated with Unreal and allows the crew on set
to preview what the shot will look like after visual effects
are added in post.

"Unreal allows us to ensure that it's both flexible and
high quality," says MacDonald. "From what we know of
UE5 so far, the main leaps will be in geometry detail, as
much higher resolution assets can be used and rendered.
This is a much better fit for the movie VFX workflow, as it
is hoped that assets will require less editing to make them
engine ready. Fully dynamic lighting, which is lumen, will
mean that there will be less need for lighting baking to
get the same result. This will allow us to keep scenes fully
dynamic, allowing us to adjust lighting in real time during
production, if necessary, which is often requested on set as
physical lighting changes from shot to shot."

New Creativity Along with the increase in quality,
which Ventre of NCam compares to the leap from UE3 to
UE4, UE5 opens up the tantalizing prospect of introduc-
ing both new ways of working and new ways of creatively
exploring virtual spaces.

"The Unreal Engine is going to be a big part of the
future of cinema," says CVP's Sam Mir. "It brings back
the ability to get practical in-camera effects, whether it's
interactive lighting on an actor or dynamic background
changes in real time, even if they were created in a virtual
space. The ability to get instant feedback on how some-
thing is going to look is invaluable."

This will find its way into many more living spaces
than before. McDonald mentions theater and events,
where video screens have become part of the interaction
with lighting to create entirely new live spectacles, while
virtual sets will take another leap in quality to become so
indistinguishable from the real thing that only a live au-
dience will influence the decision to use a physical set.
Even these viewers will be able to see completely different
shows, with mixed elements of augmented reality seam-
lessly integrated into the final TX. In the post-covid era,
you can easily get three guests on the couch for a chat
show from the comfort of your own home, and no one
will be the wiser.

And, of course, there's the possibility that this could
accelerate the development of live shots on LED screens,
as pioneered by shows like The Mandalorian.

"While Unreal has been used a few times on LED
screens during shoots, the new updates will hopefully take
it much further and get a higher percentage of finished
shots straight from the camera," MacDonald enthuses.

6. Particle simulation systems available in UE5

Cascade and Niagara [8] are two particle systems used
in Unreal Engine to create effects such as fire, smoke,
rain, snow, and sparks. Cascade is an older system intro-
duced in Unreal Engine 3, while Niagara is a newer sys-
tem added in Unreal Engine 4.25. Both systems have their
advantages and disadvantages, which will be discussed be-
low.

Cascade is based on the concept of emitters and mod-
ules. An emitter is an object that generates particles ac-
cording to certain rules, and a module is a component
that changes the properties of the particles, such as color,
size, speed, rotation, etc. Cascade allows you to create
complex effects from multiple emitters and modules and
customize them using a graphical interface. Cascade also
supports features such as GPU acceleration, particle col-
lisions, lighting and shadow interaction, sprite animation,
and more.

Niagara is based on the concept of systems and emit-
ters. A system is an object that manages one or more emit-
ters and their logic. An emitter is an object that generates
particles according to certain rules, but in Niagara these
rules can be specified using graph editors or scripting lan-
guages. Niagara allows you to create more flexible and
dynamic effects with a variety of particle types, including
mesh particles, line particles, ribbon particles, and more.
Niagara also improves the performance and quality of ef-
fects through GPU optimization, fluid simulation, and
interaction with engine functions.

A comparison of Cascade and Niagara can be seen as
follows:

1)	 Cascade is easy to use and has many default settings
for creating effects quickly.

2)	 Cascade has limitations on the number and type of
particles.

3)	 Cascade does not allow you to change the logic of
particle generation or create your own modules.

4)	 Niagara is difficult to use and requires more pro-
gramming and math skills to create effects.

5)	 Niagara allows you to create many different types
and shapes of particles.

6)	 Niagara allows you to modify the logic of particle
generation or create your own functions and modules.

7)	 Niagara improves performance and effect quality
through GPU optimization and fluid simulation.

7. Cascade

The basic and overarching concept of the cascade is
that of modular particle systems. In some 3D effects pack-
ages, such as Maya, a particle system is created with most
of the necessary properties for the behavior. The user then
modifies these properties to achieve the desired result.

In Cascade, on the other hand, the particle system
starts with just a few basic properties and a few behavior
modules.

RESEARCHED METHODS FOR SIMPLIFYING AND OPTIMIZING PARTICLES FOR PORTABLE GAMING DEVICES

94

Each module represents a specific aspect of particle

behavior and contains only the properties that control

that behavior, such as color, birth position, motion, scal-

ing, and many others. The user can then add or remove

modules as needed to further define the behavior of the

particles. Since only the modules for the desired behavior

are added, there is no unnecessary computation of unnec-

essary properties.

Best of all, modules can be easily added, removed,

copied, and even tried on emitters in the particle system,

making complex setups very easy to achieve once the user

is familiar with the available modules.

Some modules come standard with a particle emitter.

When a new sprite emitter [9] - a key component of any

particle system - is added to a particle system, it is always

created with the following default modules:

1) Required - contains a variety of properties that are

absolutely necessary for the particle system, such as the

material applied to the particles, how long the emitter

should emit particles, and many others.

2) Spawn - this module controls how fast the particles

will appear from the emitter, whether they will appear

in bursts, and any properties related to the particle birth

time.

3) Lifetime - this parameter determines how long each

particle will live after its birth. Without this module, par-

ticles will live indefinitely.

4) Initial Size - controls the size of the particle at the

moment of its birth.

5) Initial Velocity - controls the movement of the par-

ticle at the moment of its birth.

6) Color Over Life - this module controls how the col-

or of each particle will change during its life.

The Required and Spawn modules are permanent and

cannot be removed from the emitter. All other modules

can be removed at will.

Particle systems are also very closely related to the dif-

ferent materials and textures applied to each particle. The

main task of the particle system itself is to control the be-

havior of the particles, while the specific look and feel of

the particle system as a whole is often controlled by the

materials.

There are many modules that can be added to particle

emitters. To avoid confusion, these modules are divided

into different categories. These categories include those

listed in Table 1.

Two important concepts to keep in mind when work-

ing with particle modules are initial and lifetime. Initial

modules are used to control some aspect of the particle

at the moment of its birth. The Over Life or Per Life

modules are used to allow some aspect of the particle to

change during its lifetime.

Table 1
Categories of particle emission system modules

Category Description

Acceleration
Modules that control how the acceleration of
particles can be affected by, for example, drag
forces.

Attraction
Modules that control particle movement by
attracting particles to different points in space.

Camera

Modules that control the movement of
particles in camera space, allowing the user to
make them appear closer or farther away from
the camera.

Collision
Modules that control how collisions between
particles and geometry are handled.

Color Modules that control the color of particles.

Event
Modules that control the activation of particle
events, which in turn can trigger a variety of
in-game reactions.

Kill Modules that control the removal of particles.

Lifetime Modules that control how long particles live.

Light
Modules that control the light emitted by
particles.

Location
Modules that control the birthplace of
particles relative to the location of the Actor
emitter.

Material
Modules that control the material of the
particles themselves.

Orbit
Modules that provide orbital behavior of the
screen space to add movement to the effects.

Orientation
Modules that allow you to set the rotation axis
of the particles.

Parameter
Modules that can be parameterized or
controlled by external sources such as
blueprints and wounds.

Rotation Modules that control the rotation of particles.

RotationRate
Modules that control the change of rotation
speed, such as spin.

Size Modules that control the size of particles.

Spawn
Modules that add special particle appearance
rates, such as spawning particles based on
distance moved.

SubUV
Modules to display animated sprite sheets on
a particle.

Velocity Modules controlling each particle's speed.

For example, the Initial Color module allows you to
set the color of the module at the time of birth, while
the Over Life property allows the color of the particle to
gradually change between the time of birth and the time
of death.

If you change the property to a type of distribution
that changes over time, some modules use "relative time"
and some use "absolute time".

Absolute time [10] is essentially the time that the emit-
ter contains. If you have an emitter set up for 3 cycles of

Maksym Shulha, Dmytro Matvieiev, Oleksii Nazarov, Nataliia Nazarova

95

2 seconds, the absolute time for the modules in that emit-
ter will go from 0 to 2 seconds three times.

The relative time is between 0 and 1 and indicates the
lifetime of each particle.

As you work with Cascade to create your own particle
effects, it's important to keep in mind how each object
is related to the others. We've already discussed the con-
cept of modules in this document, but they are only one
component of a complete particle effect. In general, the
components of a particle system are modules, emitters,
particle systems, and emitter actors.

Just as there are many types of effects you'll want to
create with your particles, there are also many types of
emitters to help you create exactly what you need. Below
is a list of the available emitter types:

Note that all emitters, regardless of type, are sprite
emitters by default. Various Emitter Type Data modules
are then added to the emitter to change its type to some-
thing else.

Not all aspects of a particle system can be defined in
advance. Sometimes certain parts of the particle system's
behavior need to be controlled or changed at runtime.
For example, you may want to create a magic effect that
changes color based on the amount of magic energy con-
sumed during the spell. In such cases, you'll need to add
parameters to the particle system.

A parameter is a type of property that can send or
receive data to/from other systems, such as Blueprints,
Matinee, Material, or many other sources. In Cascade, a
parameter can be assigned almost any property, meaning
that the property can be controlled from outside the par-
ticle system. For example, setting a parameter to control
the rate of creation of a fire effect can allow the player to
increase or decrease the amount of flame emitted during
operation.

Conversely, there are parameter modules that can be
added to a particle system that in turn can control other
things in the level, such as the color used in a particular
material.

Particle systems can easily become very expensive to
compute. Even when using GPU particles, which offload
much of the particle calculation to the GPU, it is impor-
tant to consider the value of calculating particles that the
player is too far away to see or properly evaluate.

For example, consider the fire particle system. If you
look at it up closely, you can see the embers and sparks
rising into smoke. But if you look at it from a distance of
several hundred meters, those embers are so small that a
monitor or screen cannot even reproduce them. So why
calculate them?

This is where Levels of Detail (LOD) come into play.
The LOD system [11] allows you to set your own distance
ranges at which your particle system will automatically sim-
plify. Each range represents a different LOD. Simplification
comes in the form of reduced property values, disabled

modules, or even disabled emitters. For example, in the
bonfire example above, it would be ideal to completely dis-
able the emitter that was adding sparks to the overall effect
when the player was too far away to see them.

Your particle system can have as many LODs as you
need, and you can manually control the ranges for each
one.

Distributions are a set of data types for processing data
in special ways, such as using a range for a value or inter-
polating a value along a curve. Whenever your particle sys-
tem requires randomization or the ability to change some
aspect of the particle over time, you will use a distribution
to control that property.

Many properties found in Cascade modules can have
different distributions applied to them. The actual value of
the property is then set in the distribution.

8. Niagara

Why re-invent visual effects for Unreal Engine? Unreal
Engine continues to expand its user base and is now used
in many industries outside of game development.

Unreal Engine users are more diverse than ever, rang-
ing from design students to small indie developers, to
large professional studio teams, to individuals and com-
panies outside the gaming industry. As they move forward,
Epic's developers will not know everything about every in-
dustry that uses the Unreal Engine. They wanted to create
a visual effects (VFX) system that would work for all users
across all industries.

They wanted to create a new system that would give all
users the flexibility to create the effects they wanted. Their
goals for the new VFX system were:

1.	 Put complete control in the hands of the artists.
2.	 The ability to program and customize on every axis.
3.	 Better tools for debugging, visualization, and pro-

ductivity.
4.	 Support for data from other parts of the Unreal

Engine or external sources.
Total user control begins with access to data. Epic

Games wants the user to be able to use any data from any
part of the Unreal Engine, as well as data from other ap-
plications. So they decided to give the user everything.

In order to make all this data available to a user,
you need to determine how someone can use the data.
Namespaces provide containers for hierarchical data. For
example, Emitter.Age [12] contains data about an emitter;
Particle.Position contains data about a particle. A param-
eter map is a particle payload that contains all the attri-
butes of a particle. This makes everything optional.

Any kind of data can be added as a particle param-
eter. We can add complex structures, transform matrices,
or boolean flags. We can add these or any other data types
and use them to simulate effects.

There are advantages to both the stack paradigm
(as used in Cascade) and the graph paradigm (as used

RESEARCHED METHODS FOR SIMPLIFYING AND OPTIMIZING PARTICLES FOR PORTABLE GAMING DEVICES

96

in Blueprints). Stacks give users modular behavior and
readability. Graphs give users more control over behavior.
This new effect system combines the best of both para-
digms.

Modules work in a graphical paradigm - we can cre-
ate modules from HLSL in the script editor using a visual
node graph. Modules interact with common data, encap-
sulate behavior, and are compiled together.

Emitters work in a stacked paradigm - they serve as
containers for modules and can be stacked to create dif-
ferent effects. An emitter is single purpose, but it is also
reusable. Parameters are passed from modules to the
emitter level, but you can change modules and parameters
in the emitter.

Like emitters, systems work in a stacked paradigm
and also use a sequencer timeline to control the behav-
ior of emitters in the system. A System is a container for
Emitters. The system combines these emitters into a sin-
gle effect. When editing a system in the Niagara editor, we
can change and override any parameter, module or emit-
ter in the system.

The particle simulation in Niagara works conceptu-
ally like a stack - the simulation flows from the top of
the stack to the bottom, executing the modules in order.
Importantly, each module is assigned to a group that de-
scribes when the module is executed. For example, mod-
ules that initialize particles or act when a particle appears
belong to the Particle Spawn group.

Within each group, there may be several stages that
are invoked at certain points in the system's life cycle.
Emitters, systems and particles have Spawn and Update
stages by default. Spawn stages are invoked in the first
frame in which the group exists. For example, systems in-
voke their spawn stage the first time the system is created
and activated on a level. Particles invoke their spawn stage
whenever the emitter emits a particle, and spawn instruc-
tions are executed for each new particle created. Update
stages are invoked in every frame where a system, emitter
or particle is active.

There are also advanced steps such as events and
simulation steps that can be added to the spawn and up-
date flow. Events are called whenever a particle gener-
ates a new event and the emitter is configured to handle
that event. Where possible, event handler steps occur in
the same frame, but after the original event. Simulation
steps are an advanced GPU feature. This feature allows
you to run multiple sleep and update stages in sequence
and is useful for building complex structures such as fluid
simulations.

By adding each module to a stage (update, spawn,
event, or simulation) in a group (system, emitter, or parti-
cle), we can control when the module runs and what data
it processes. Stack groups are associated with namespaces
that define what data the modules in that group can read
or write.

For example, modules executing in the System group
can read and write parameters in the System namespace
but can only read from parameters that belong to the
Engine or User namespaces. As execution moves down
the stack from the System group to the Emitter group,
modules executing in the Emitter group can read and
write parameters in the Emitter namespace, but can
only read from parameters in the System, Engine, and
User namespaces. Modules in a particle group can only
read from parameters in the System and Emitter name-
spaces.

Since modules in emitter groups can read parameters
in the system namespace, a simulation relevant to all
emitters can be performed once by modules in the sys-
tem group, and the results of this simulation (stored in the
system namespace) can be read by modules in the emit-
ter group in each individual emitter. This continues with
modules in the Particle group, which can read parameters
in the System and Emitter namespaces.

In other respects, Niagara is very similar to Cascade.
This system is more advanced, more flexible, and has
endless possibilities for extending functionality, although
this makes the process of creating particles more compli-
cated. In this subsection, the main differences and archi-
tectural features between Cascade and Niagara have been
presented, since the process of automated optimization in
these systems is conceptually different.

9. Optimizing particle simulation systems

When creating a game, we can have a lot of variation
in the FX workload depending on the composition of the
scene. Sometimes it may be necessary to take steps to
manage performance, such as dropping instances outside
a certain range or instances that exceed a certain budget.

Effect Type resources allow you to configure a set
of settings once and then apply them to a collection of
Niagara systems.

The Effect Type object allows you to configure several
different methods for selecting systems that exceed your
budget. All of these options are available under the Budget
Scaling heading.

Maximum global budget usage (see Fig. 6): This op-
tion allows you to set a budget above which any system
will be discarded. Typically, this setting is set to a value
between 0 and 1, corresponding to a percentage between 0
and 100%. You can set it to 1.5 if you want the system to be
more permissive. This means that once a system reaches
this percentage of your budget, it will be discarded. This is
the best option if you value performance over appearance.

Maximum Distance Scale by Global Budget
Utilization: This option allows you to customize the curve
to determine how the distance at which you select systems
decreases as your budget usage increases. For example, if
your budget is very high, Niagara will only render those
that are nearby, not those that are far away.

Maksym Shulha, Dmytro Matvieiev, Oleksii Nazarov, Nataliia Nazarova

97

Fig. 6. Maximum global budget utilization

Maximum Instance Scale by Global Budget Usage:
This option allows you to configure a curve that deter-
mines how the number of instances in your tier will de-
crease as budget usage increases. This will scale down all
instances of all systems that are subject to this type of ef-
fect.

Maximum scaling of system instances by global bud-
get usage: This option allows you to customize the curve
(see Fig. 7) that determines how the number of instances
at your tier decreases as budget usage increases. However,
with this option, instead of dropping all instances on all
systems, you drop a certain number of instances for each
system.

Fig. 7. Demonstration of the culling system operation

For each of these three parameters, which take the val-
ues Start X, Start Y, End X, and End Y, these values define
a linearly interpolated curve. Anything above this curve is
discarded. For an example of what the curve will look like,
see the diagram below.

In the grand scheme of things, particle count plays
a very small role in performance. Regardless of whether
the screen is split or not, material complexity and screen
coverage (overdraw) are your clear enemies when it comes
to the overall cost of a given system. A simple emissive
spark, with nothing more than a texture multiplied by

vertex colors and connected to an emissive input in an
unlit material, follows only a handful of instructions. You
can create them in droves all day long, and the overall im-
pact on your productivity is likely to be very small. Sprites
are small, which means screen coverage is low, and the
complexity of the material makes them cheap and fast
to render. The number of vertices isn't really something
you need to worry about in the long run unless you're
reaching really extreme numbers (hundreds, thousands,
or more).

A much bigger impact on overall performance is the
number of instructions for your materials. For materials
like fire and smoke, there are basically two ways to go. The
first is to create a more complex material for your effect.
In the fire example, you would create fewer sprites and let
the randomness and complexity of the advanced material
do the work of bringing the emitter to life. Another op-
tion is to use a cheaper material and spawn more sprites,
keeping the overall cost the same but allowing more par-
ticles to do your job in achieving randomness, as opposed
to a more complex material. Keep in mind that material
costs decrease exponentially with distance (a quadrilateral
drawn on the screen twice as far away from the camera
costs 4 times less due to the fact that the total pixel area
decreases exponentially with distance, reducing the num-
ber of pixels that are dragged).

In our case, we need to analyze how expensive our
materials are, how many sprites we create, and how close
to the screen we will approach these effects. These three
properties are the main decision makers in terms of the
complexity of the emitter, and they all need to be bal-
anced.

In general, focus on reducing the complexity of your
materials as a way to improve performance, and always be
aware of potential drag when you are working with emit-
ters as a whole. Don't get hung up on particle counts un-
less you are generating extreme numbers of particles, or
you are generating meshes using mesh emitters that have
extreme numbers of vertices.

Conclusions

After analyzing the industry, we came to the conclu-
sion that Unreal Engine is the most suitable for our tasks.
Unity is more popular among developers for portable de-
vices, but at the same time it has a less developed VFX
creation system. The system implemented in Unity has
not been globally updated since the creation of the en-
gine, and the capabilities implemented in it are not flex-
ible enough to conduct a pure experiment and analyze
possible optimization strategies. At the same time, Unreal
Engine has the most advanced VFX creation system -
Niagara, which provides the best opportunity to study and
optimize particle simulation systems, as it allows not only
to use ready-made solutions, but also to write code inde-
pendently.

RESEARCHED METHODS FOR SIMPLIFYING AND OPTIMIZING PARTICLES FOR PORTABLE GAMING DEVICES

98

The comparison of Niagara and Cascade showed a fun-
damental difference in the principles of optimizing parti-
cle simulation systems. Only one principle is relevant now,
as it was before - reducing the number of particles, but as
practice shows, this is often not enough. The change in
the principles of optimization of these systems shows that
the search is still ongoing and the decisions made earlier
by the engine developers are no longer relevant. This sug-
gests that new solutions may also be imperfect, as they try
to solve the optimization problem universally, rather than
in the best way for mobile devices.

For this reason, further analysis of existing optimiza-
tion methods and their improvement or creation of new
ones is a relevant and promising task. To this end, we
plan to study the principles of VFX, existing optimization
methods, and conduct tests on portable devices.

References

[1]	 Матвєєв, Д.І., Лановий, О.Ф. Методи спрощення опра-
цювання систем симуляції незалежних часток у серед-
овищі Unreal Engine 4 // Èlektron. model. 2023, №45(2) с.
95-107. URL: https://doi.org/ 10.15407/emodel.45.02.095

[2]	 Cascade Particle Systems // Unreal Engine Documentation.
URL: https://docs.unrealengine.com/ 4.26/en-US/Render-
ingAndGraphics/ ParticleSystems/

[3]	 Niagara Visual Effects // Unreal Engine Documentation.
URL: https://docs.unrealengine.com/ 4.26/en-US/Render-
ingAndGraphics/Niagara/

[4]	 Лановой А.Ф., Лановой А.А. Моделирование поведения
толпы на основе дискретно-событийного мультиагент-
ного подхода // Східно-Європейський журнал передових
технологій, 2014, №4(70), с. 52-57

[5]	 GPUSprites Type Data // Unreal Engine Documentation.
URL: https://docs.unrealengine.com/ 4.26/en-US/Ren-
deringAndGraphics/ParticleSystems/ Reference/TypeData/
GPUSprites/

[6]	 Collision Modules // Unreal Engine Documentation. URL:
https://docs.unrealengine.com/4.26/en-US/ RenderingAnd-
Graphics/ParticleSystems/Reference/ Modules/ Collision/

[7]	 Event Modules // Unreal Engine Documentation. URL:
https://docs.unrealengine.com/4.26/en-US/Rendering
AndGraphics/ParticleSystems/Reference/Modules/ Event/

[8]	 VFX Optimization Guide // Unreal Engine Documentation.
URL: https://docs.unrealengine.com/ 4.26/en-US/Render-
ingAndGraphics/ParticleSystems/ Optimization/

[9]	 Матвєєв, Д.І., Лановий, О.Ф. Проблеми оптиміза-
ції графіки під пристрої віртуальної реальності //
ΛΌГOΣ.ONLINE, 2020, №14. URL: http://eoi.citefactor.
org/10.11232/2663-4139.14.04

[10]	Особливості підготовки 3D моделей для використан-
ня у VR проектах // Science, Research, Development.
URL: http://www.xneh.com.ua/ files/118_01_xi_2021.
pdf#page=35

[11]	Порівняння методів текстурування моделей для мо-
більних платформ // Science, Research, Development.
URL: http://www.xneh.com.ua/ files/118_01_xi_2021.
pdf#page=37

[12]	Дослідження інструментів та засобів оптимізації
3D-графіки в комп'ютерних іграх та їх застосування до
ігор у жанрі "First-person Shooter" // Електронний архів
ХНУРЕ. URL: https:// openarchive.nure.ua/server/api/
core/bitstreams/ e8582e45-10b9-44bf-aabc-cb0b120389ee/
content

The article was delivered to editorial stuff on the 06.04.2023

Maksym Shulha, Dmytro Matvieiev, Oleksii Nazarov, Nataliia Nazarova

