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STUDY OF ALGORITHMS FOR OPTIMIZATION OF ENERGY MANAGEMENT 
IN TRANSPORTATION SYSTEMS FOR REDUCTION OF ENVIRONMENTAL IMPACT

The object of the research is the technology of optimization algorithms for energy consumption management 
in transport systems. The purpose of the work is research and analysis of the effectiveness of optimization algorithms 
for reducing environmental impact, selection of criteria and methods for comparative analysis. The existing algorithms 
for optimizing energy consumption management in transport systems were considered, their advantages and disadvantages 
and principles of operation were investigated, methods of comparison were described and demonstrated, and formulas 
for calculating numerical indicators were proposed.

TRANSPORT SYSTEMS, OPTIMIZATION ALGORITHMS, ENERGY MANAGEMENT, ECO-FRIENDLY 
ALGORITHMS

Шемрикович А.Д., Саманцов О.О., Назаров О.С., Назарова Н.В. Дослідження алгоритмів оптимізації енерго-
менеджменту в транспортних системах для зменшення впливу на навколишнє середовище. Об’єктом дослідження 
є технології алгоритмів оптимізації керування енергоспоживанням у транспортних системах. Метою роботи 
є дослідження та аналіз ефективності алгоритмів оптимізації для зменшення екологічного впливу, виділення 
критеріїв та методів для проведення порівняльного аналізу. Розглянуто існуючі алгоритми оптимізації керування 
енергоспоживанням у транспортних системах, досліджено їх переваги та недоліки та принципи роботи, описано 
та продемонстровано методи порівняння та запропоновано формули для обчислення числових показників.

ТРАНСПОРТНІ СИСТЕМИ, АЛГОРИТМИ ОПТИМІЗАЦІЇ, ЕНЕРГОМЕНЕДЖМЕНТ, ЕКОЛОГІЧНО 
ЧИСТІ АЛГОРИТМИ

Introduction

In the intricate tapestry of our modern world, the veins 
of trade and communication are intricately woven through 
maritime and road transportation systems. While these ar-
teries of trade and mobility are essential to global prosper-
ity, they also carry a burden of environmental impact. 

The constant demand for movement, whether of goods 
or people, has cast a deep shadow on our planet, mani-
festing itself in the rapid growth of carbon emissions and a 
significant environmental burden. 

The specter of climate change looms, demanding a re-
assessment of how we move around our planet. The oceans 
teem with ships carrying goods across continents, and the 
roads pulse with vehicles carrying people and goods. But 
the fuel that powers these journeys is often too costly for 
our environment. 

This study examines algorithms for optimizing energy 
management in transportation systems from an environ-
mental impact perspective. 

The analysis derives the main evaluation criteria and 
forms a comparison model. 

The goal of this work is to identify methodologies that 
minimize energy consumption without compromising the 
integrity of transportation systems.

In order to get a result that would satisfy the goal, it is 
necessary to solve a series of the following problems: 

–	 analyze existing energy management optimization 
algorithms; 

–	 determine the methods and criteria for comparing 
algorithms; 

–	 model the conditions for conducting experiments 
to evaluate the algorithms; 

–	 use the obtained data to measure the selected met-
rics for comparing algorithms; 

–	 analyze the results obtained; 
–	 formulate recommendations for the use of the algo-

rithms; 
–	 propose a possible extension of the study and char-

acterize the relevance of the work in the future. 
The subject of the study is the effectiveness and feasi-

bility of using algorithms to optimize energy management 
in transportation systems in terms of environmental im-
pact. The subject of the study are algorithms for optimiza-
tion of energy management. 

The research methods are measurement of perfor-
mance indicators by criteria and their calculation using 
the proposed mathematical formulas for calculating each 
of the indicators. The results of the study can be success-
fully used in the creation or further analysis of new al-
gorithms for optimization of energy management, or in 
the selection of the most optimal algorithm under existing 
conditions.
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1. Analysis of the subject area

Gasoline, the quintessential energy source for marine 
and road transportation, is the cornerstone of global mo-
bility. But behind its ubiquitous role lies a shadow — a 
history of environmental impacts that reverberate across 
oceans and urban landscapes. 

In maritime trade and transportation, gasoline takes its 
place among a variety of fuels. While it contributes to the 
energy needs of ships, its environmental impact requires 
careful consideration. While gasoline-powered ships emit 
relatively low levels of sulfur oxides (SOx) and particu-
late matter, they contribute to the global greenhouse gas 
burden. Burning gasoline releases carbon dioxide (CO2), 
adding to the complex matrix of marine emissions that af-
fect the climate and the delicate balance of marine eco-
systems. 

Next, let's talk about gasoline in automobiles. The his-
tory of gasoline's impact on road transportation is similar to 
its role at sea. As the primary fuel for internal combustion 
engines in cars, trucks and buses, gasoline plays a key role 
in ensuring mobility. But that confidence comes at a price. 

Gasoline-powered vehicles contribute significantly to 
urban air pollution by emitting nitrogen oxides (NOx) and 
volatile organic compounds (VOCs). These emissions not 
only degrade air quality, but also contribute to respiratory 
health problems, especially in densely populated urban 
areas.

Next, the cumulative impact. The cumulative envi-
ronmental impact of both marine and road transport fu-
els transcends geographic boundaries. While road trans-
port typically affects local air quality, maritime transport 
extends its impact over large expanses of water, affecting 
coastal regions and the high seas. The cumulative emis-
sions of CO2, methane, NOx and other pollutants paint a 
grim picture — a story of environmental impact that goes 
beyond the convenience and necessity of transportation. 

On to mitigation and solutions. Tackling the pollution 
caused using gasoline in transportation requires a multi-
pronged approach. Tighter regulations enforce emissions 
standards and encourage the development of cleaner 
engine technologies. The transition to electric vehicles, 
hybrid systems, and research into sustainable alternative 
fuels offer a glimmer of hope for reducing the environ-
mental impact of gasoline. Innovations in engine efficien-
cy and emissions control offer promising ways to reduce 
pollution while maintaining mobility.

Finally, the balance between mobility and responsi-
bility. Gasoline, an indispensable energy source, requires 
a delicate balance between progress and environmental 
stewardship. As we move toward a transportation-depen-
dent future, the imperative is not to deny mobility, but to 
innovate greener solutions. Using cleaner fuels, improv-
ing engine technology, and fostering a collective commit-
ment to reducing our dependence on gasoline are impor-
tant steps toward a harmonious coexistence of mobility 

and environmental responsibility. This balance holds the 
promise of a cleaner and healthier planet for future gen-
erations and is shown in Fig. 1.

Environmental Impact Metrics
Marine 

Transport 
(per year)

Auto 
Transport 
(per year)

Carbon Dioxide (CO2) 
Emissions

120 million 
tons

420 million 
tons

Sulfur Oxides (SOx) Emissions 5,000 tons 2,000 tons

Particulate Matter (PM) 
Emissions

300 tons 1,500 tons

Nitrogen Oxides (NOx) 
Emissions

2,000 tons 6,000 tons

Volatile Organic Compounds 
(VOCs)

150 tons 300 tons

Fig. 1. Balance between mobility and responsibility

2. Problem statement

After analyzing the subject industry, its main needs 
and existing problems, it is necessary to analyze what 
algorithms exist for optimizing energy management and 
formulate criteria for evaluating these algorithms. Possible 
criteria for evaluating the performance of each algorithm 
may include:

–	 Energy savings. The effectiveness of the algorithm 
in conserving energy while maintaining or improving per-
formance, and the ability of the algorithm to minimize 
fuel consumption during transport operations; 

–	 Environmental Impact Reduction. The abil-
ity of the algorithm to reduce greenhouse gas emissions 
(CO2, NOx, SOx, VOCs) associated with transportation 
activities, and the impact of the algorithm on reducing 
pollutants that contribute to air and water pollution; — 
Operational Performance. How efficiently the algorithm 
uses resources, improving vehicle/ship performance while 
reducing energy consumption; 

–	 Scalability and adaptability. How well the algorithm 
performs when applied to different scales of transportation 
systems, from individual vehicles/ships to entire fleets, the 
performance of the algorithm under different conditions, 
including weather, traffic, and work shifts; 

–	 Real-time implementation. The speed of the algo-
rithm to provide optimized solutions for dynamic changes 
in the environment and operations; 

–	 Computational requirements of the algorithm for 
real-time implementation in transportation systems.

–	 Economic Efficiency. Costs associated with imple-
menting and supporting the algorithm in transportation 
systems, ability of the algorithm to provide significant en-
vironmental benefits compared to the cost of implemen-
tation; 

–	 Durability and reliability. Resilience of the al-
gorithm to uncertainties and unexpected scenarios in 
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transportation operations, consistency and accuracy of 
the algorithm to provide optimized solutions over time; 

–	 Compliance with regulatory requirements. The ex-
tent to which the algorithm helps transportation systems 
meet environmental and emissions standards; 

–	 Ease of use and integration. Ease of integration of 
the algorithm into existing transportation systems; 

- User Adaptability. Convenience of the algorithm for 
transport operators and decision makers. 

Taking into account all of the above criteria and ana-
lyzing the subject area, the following tasks need to be 
solved as part of the study of algorithms for optimizing 
energy management in transportation systems to reduce 
environmental impact:

–	 Review existing algorithms for optimizing energy 
management in transportation systems,

–	 Select those that can be used to reduce environ-
mental impact; 

–	 Prioritize the above evaluation criteria;  
–	 Analyze and organize the algorithms according to 

the above evaluation criteria; 
–	 Formulate an experimental plan to obtain experi-

mental data, create software test environments for mea-
surements for each of the criteria and algorithms; 

–	 Conduct the experiment, analyze the results, and 
document the results; 

–	 Provide recommendations and analysis results for 
the use of specific energy management optimization algo-
rithms.

3. Overview of the main algorithms used for optimization

These optimization algorithms offer a variety of ap-
proaches to managing energy consumption in transporta-
tion systems, providing solutions for route optimization, 
resource allocation, vehicle scheduling, and energy effi-
cient operation. Each algorithm has its own strengths and 
applications, and their choice often depends on the specific 
needs and constraints of the transportation context. 

The most commonly used algorithms are:
Linear Programming. Used in route optimization, re-

source allocation, and planning in transportation systems. 
It aims to maximize or minimize a linear objective func-
tion subject to linear constraints. It is used to optimize 
transportation logistics and distribution. 

Genetic Algorithms (GA). Used in vehicle routing, 
fleet optimization, and energy-efficient vehicle design. 
GA mimics the processes of natural selection to constantly 
evolve solutions. This is important for finding optimal so-
lutions to complex transportation and logistics problems. 

Ant Colony Optimization (ACO). Used to find the 
shortest routes in transportation networks and optimize 
traffic flow. ACO simulates the behavior of ants foraging 
for food and guides algorithms to find optimal routes and 
paths. It is effective in solving routing and resource alloca-
tion problems.

Particle Swarm Optimization (PSO). Used in route op-
timization search, vehicle scheduling, and energy-efficient 
vehicle routing. PSO models the social behavior of organ-
isms by iteratively optimizing possible solutions. It is useful 
for solving complex optimization problems in transporta-
tion systems. 

Heating Simulation. Used in vehicle routing, energy ef-
ficient routing, and scheduling. Simulated annealing mim-
ics the annealing process in metallurgy to find optimal so-
lutions by taking worse solutions first before approaching 
the optimal one. 

Dynamic Programming. Used for optimal control of 
vehicle operation and energy-efficient routing. Dynamic 
programming breaks down complex problems into sim-
pler subproblems that are suitable for finding optimal so-
lutions over time, such as in route planning and energy 
management. 

Heuristic Algorithms. Used in vehicle routing, traf-
fic flow optimization, and fleet management. Heuristic 
algorithms, including methods such as nearest neighbor, 
insertion, and expansion, provide approximate solutions 
to transportation optimization problems. 

Metaheuristic algorithms. Used in vehicle schedul-
ing, energy-efficient routing, and fleet optimization. 
Metaheuristic algorithms include a variety of methods 
such as tabu search, genetic algorithms, and simulated 
annealing. These methods provide high-level strategies for 
finding solutions efficiently. 

4. Linear Programming

Linear programming is a cornerstone in the field of 
energy management, providing a structured mathemati-
cal approach to optimizing resource use, streamlining 
operations, and reducing environmental impact. In the 
dynamic landscape of transportation, where efficiency is 
key, and sustainability is imperative, linear programming 
is becoming a key tool for navigating the complex inter-
play between energy consumption, operational efficiency, 
and environmental protection. 

At its core, linear programming is a mathematical 
technique that seeks to optimize an objective function 
subject to a set of linear constraints. In the context of en-
ergy management, this technique is becoming a catalyst 
for optimizing fuel consumption, minimizing emissions, 
and improving energy efficiency in transportation sys-
tems. Linear programming models provide a systematic 
framework for decision making, helping to allocate re-
sources while meeting operational constraints. 

Linear programming plays a key role in determining 
the most efficient routes for vehicles, ships, or transpor-
tation networks. By taking into account variables such as 
distance, fuel consumption, and time constraints, it helps 
determine the optimal paths that minimize energy con-
sumption and meet operational requirements. 
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The efficient use of resources such as fuel, time, and 
vehicle capacity is critical to transportation systems. 
Linear programming models help to optimally allocate 
these resources across fleets or routes, ensuring that en-
ergy consumption is minimized without compromising 
performance. 

By optimizing schedules, minimizing downtime, and 
balancing load factors, linear programming helps improve 
vehicle efficiency. This makes it easier to make strategic 
decisions to reduce energy waste and increase overall pro-
ductivity. 

Linear programming algorithms provide near-optimal 
solutions to energy management problems, enabling ac-
curate resource allocation and operational planning. 

These models enable real-time decision making by 
providing information for route planning, resource allo-
cation, and operational planning. By optimizing fuel con-
sumption and reducing emissions, linear programming 
makes a significant contribution to reducing the environ-
mental impact of transportation systems. 

While linear programming provides powerful tools for 
managing energy consumption, it is not without limita-
tions. It assumes linear relationships between variables 
and constraints, which can oversimplify the complexity of 
real-world transportation systems. Future developments 
aim to address these limitations by integrating nonlinear 
models and advanced optimization techniques to accu-
rately model more complex transportation dynamics. 

Linear programming is a fundamental pillar in the 
quest for efficient and sustainable energy management in 
transportation systems. Its application to route optimiza-
tion, resource allocation, and operations planning paves 
the way for reducing energy consumption, minimizing 
environmental impact, and increasing efficiency, ulti-
mately leading transportation systems to a future where 
progress is seamlessly integrated with environmental  
responsibility.

5. Genetic algorithms

Genetic algorithms (GAs) represent an advanced ap-
proach to solving complex optimization problems, and 
their application to energy management in transportation 
systems heralds a transformative paradigm. Based on the 
principles of natural selection and evolutionary process-
es, GAs offer innovative solutions that optimize resource 
utilization, reduce energy consumption, and mitigate the 
environmental impact of various transportation modes. 

GAs mimics the process of natural selection, using 
the principles of selection, reproduction, and mutation 
to iteratively evolve solutions to complex problems. In the 
area of energy management: 

GAs excels at finding optimal routes for vehicles, tak-
ing into account factors such as fuel economy, traffic con-
ditions, and time constraints. By developing and refining 
potential solutions, they identify routes that minimize 

energy consumption while meeting operational require-
ments. 

These algorithms help optimize fleet performance by 
determining the best vehicle configuration, scheduling, and 
resource allocation to minimize energy loss across the fleet. 

GAs play an important role in the development of 
energy-efficient vehicles, optimizing engine performance, 
aerodynamics, and vehicle weight to improve fuel effi-
ciency and reduce overall energy consumption.

GAs explores large solution spaces and provide near-
optimal solutions to complex problems of optimizing 
many variables in transportation systems. They adapt to 
changing environments and dynamic conditions, making 
them suitable for real-time decision making in transporta-
tion operations. 

GAs contributes to innovative solutions by explor-
ing unconventional paths and configurations that may be 
overlooked by human-designed algorithms. The compu-
tational requirements of GAs can be intensive, requiring 
significant computing resources. Tuning the parameters 
for optimal performance and convergence is challenging 
but offers opportunities for improvement. Combining the 
algorithms with other optimization methods, such as neu-
ral networks or metaheuristic algorithms, increases their 
efficiency and effectiveness. 

The evolution of GA continues, with promising ad-
vances aimed at addressing current limitations and further 
optimizing energy management in transportation systems. 
Future developments will focus on improving scalability, 
increasing convergence performance, and integrating GA 
with new technologies to achieve even greater efficiency 
and sustainability.

Genetic algorithms are emerging as a pioneering force 
in the revolution of energy management in transportation 
systems. Their application in route optimization, fleet 
management, and vehicle design heralds a future where 
transportation is not only efficient, but also environmen-
tally sustainable. By mimicking the evolutionary processes 
of nature, GAs are leading us to a greener, more energy-
efficient future of transportation, where innovation and 
nature-inspired algorithms work together to reduce envi-
ronmental impact and increase operational efficiency. 

6. Ant colony optimization

Ant Colony Optimization (ACO) is a powerful biologi-
cal algorithm that mirrors the behavior of ants foraging for 
food. In the field of energy management in transportation 
systems, ACO is emerging as a transformative force, offer-
ing innovative solutions that optimize routes, reduce fuel 
consumption, and minimize environmental impact. 

ACO algorithms model the behavior of ants as they 
communicate and navigate to find the shortest path to 
food sources. This approach uses pheromone trails and 
heuristic information to iteratively converge on optimal 
solutions. 
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ACO algorithms are ideal for finding the most energy-
efficient routes for vehicles or ships. By mimicking the 
communication between ants using pheromones, these 
algorithms determine the paths that minimize fuel con-
sumption, taking into account factors such as distance, 
traffic, and energy efficiency. 

In urban transportation systems, ACO helps optimize 
traffic flow by identifying routes that minimize conges-
tion, reduce idle time, and optimize traffic signals to im-
prove fuel economy. ACO helps optimize the allocation 
of resources across transportation networks by schedul-
ing deliveries and vehicle routes to minimize energy con-
sumption and optimize resource utilization.

ACO explores multiple paths and configurations, 
providing near-optimal solutions to complex transporta-
tion optimization problems. ACO adapts to dynamic and 
changing conditions, making it suitable for real-time de-
cision making in transportation operations. By mimicking 
the self-organization and decentralized decision-making 
of ants, ACO promotes innovative solutions in energy 
management. ACO can be a computationally intensive 
process that requires parameter optimization for efficien-
cy. Fine-tuning of ACO parameters is critical for optimal 
convergence, opening opportunities for further research 
and improvement. 

As technology advances, ACO algorithms are expected 
to continue to evolve. Future developments aim to reduce 
computational complexity, increase scalability, and inte-
grate ACO with new technologies to improve transporta-
tion efficiency and sustainability. 

Ant Colony Optimization is an innovative way to re-
think energy management in transportation systems. Its 
application to route optimization, traffic flow manage-
ment, and resource allocation heralds a future where 
transportation operations are not only efficient, but also 
environmentally conscious. Inspired by the principles of 
organization in nature, ACO algorithms pave the way for 
a sustainable, energy-efficient transportation ecosystem 
where biological algorithms guide us to reduce our envi-
ronmental impact and optimize our energy consumption. 

7. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a biological 
algorithm that models the social behavior of organisms, 
including the flocking and swarming patterns observed in 
birds and fish. In the field of energy management in trans-
portation systems, PSO is emerging as a dynamic and ef-
fective tool that provides innovative solutions to optimize 
routes, increase fuel efficiency, and reduce environmental 
impact. 

PSO algorithms are based on the collective behavior 
of organisms in a swarm. Individuals (particles) within the 
swarm cooperate and communicate by exchanging infor-
mation and seeking optimal solutions through iterative 
movement in the solution space. 

PSO is well suited for determining energy-efficient 
routes for vehicles, ships, or transportation networks. By 
simulating the movement of particles, these algorithms 
identify paths that minimize fuel consumption, taking 
into account factors such as distance, traffic, and energy 
efficiency. 

By optimizing operations, PSO helps determine the 
best vehicle configuration, scheduling, and resource allo-
cation to minimize fleet energy consumption. 

PSO contributes to the development of energy-effi-
cient vehicles by optimizing engine performance, aero-
dynamics, and vehicle weight, resulting in improved fuel 
efficiency and reduced energy consumption.

Benefits and Impacts. 
PSO explores a wide variety of paths and configura-

tions, providing near-optimal solutions to complex trans-
portation optimization problems. 

PSO adapts to changing environments and evolving 
conditions, making it suitable for real-time decision mak-
ing in transportation operations. 

By mimicking swarm behavior, PSO uses collective in-
telligence to find innovative solutions to manage energy 
consumption. 

Optimization of PSO parameters is critical for con-
vergence and efficiency. PSO can be a computationally 
intensive process that requires optimization for scalability 
and performance. 

Integrating PSO with complementary optimization 
techniques can increase its effectiveness in complex trans-
portation systems. 

As technology advances, PSO algorithms are expected 
to continue to evolve. Future developments will address 
computational complexity, increase convergence, and in-
tegrate PSO with new technologies to improve transporta-
tion efficiency and sustainability.

Particle Swarm Optimization represents an advanced 
approach to revolutionize the management of energy 
consumption in transportation systems. Its application in 
route optimization, fleet management, and vehicle design 
provides a glimpse into a future where transportation is 
not only efficient, but also environmentally sustainable. 
By following the natural principles of cooperation, PSO 
algorithms pave the way for a more sustainable and energy 
efficient transportation ecosystem, where innovative algo-
rithms guide us to reduce our environmental impact and 
optimize energy consumption.

8. Annealing simulation

Simulated Annealing (SA) is a powerful optimization 
method inspired by the physical process of annealing in 
metallurgy. It is a versatile algorithm used in a wide variety 
of fields, including energy management in transportation 
systems. SA provides a unique approach to solving com-
plex optimization problems to minimize energy consump-
tion, optimize routes, and reduce environmental impact. 

STUDY OF ALGORITHMS FOR OPTIMIZATION OF ENERGY MANAGEMENTIN TRANSPORTATION SYSTEMS FOR REDUCTION OF ENVIRONMENTAL IMPACT
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The SA algorithm mimics the annealing process in 
metallurgy, where metals are heated and gradually cooled 
to reduce defects and produce a more stable structure. 
Similarly, SA gradually approaches optimal solutions, al-
lowing for inferior decisions from time to time to avoid 
local optima. 

SA can find energy-efficient routes for vehicles or 
ships. By exploring and gradually cooling the system, the 
algorithm identifies paths that minimize fuel consump-
tion, taking into account factors such as distance, traffic 
conditions, and energy efficiency. 

By optimizing vehicle scheduling, SA helps minimize 
downtime, improve utilization, and reduce energy costs 
during transportation operations. 

SA helps optimize resource allocation across transpor-
tation networks, planning deliveries and vehicle routes to 
minimize energy consumption and increase overall effi-
ciency.

Benefits and Impact 
SA explores multiple solutions, allowing you to iden-

tify near-optimal paths and configurations in complex 
transportation optimization problems. 

SA adapts to changing conditions, enabling real-time 
decision making in transportation operations. 

SA's ability to make worse decisions from time to time 
helps avoid getting stuck on local optimal solutions, lead-
ing to better overall results. 

Parameter Tuning: Optimizing SA parameters is essen-
tial for achieving optimal convergence performance and 
solution quality. 

SA can be computationally intensive, requiring opti-
mization for scalability and efficiency. 

Integrating SA with complementary optimization 
techniques can increase its effectiveness in solving com-
plex transportation optimization problems. 

As technology advances, SA algorithms continue to 
evolve. Future advances will address computational com-
plexity, increase convergence, and integrate SA with new 
technologies to improve transportation efficiency and sus-
tainability. 

Simulated Annealing is a sophisticated tool for re-
thinking energy management in transportation systems. 
Its application to route optimization, vehicle scheduling, 
and resource allocation promises a future where transpor-
tation operations are not only efficient, but also environ-
mentally conscious. By mimicking the annealing process, 
SA algorithms lead us to reduce environmental impact 
and optimize energy consumption, paving the way for a 
more sustainable and efficient transportation ecosystem.

9. Dynamic Programming

Dynamic Programming (DP) is a powerful math-
ematical optimization technique used in a variety of 
fields, including energy management in transportation 
systems. Known for its ability to solve complex problems 

by breaking them down into simpler subproblems, DP 
offers innovative solutions to optimize routes, reduce 
fuel consumption, and improve overall transportation  
efficiency. 

At its core, Dynamic Programming solves a complex 
problem by breaking it down into smaller subproblems, 
solving each subproblem only once, and storing the solu-
tion. This bottom-up approach allows you to obtain opti-
mal solutions from the optimal solutions of its subprob-
lems.  

DP is ideal for finding energy-efficient routes for ve-
hicles, ships, or transportation networks. By considering 
converging subproblems, it identifies paths that minimize 
fuel consumption, taking into account variables such as 
distance, traffic conditions, and energy efficiency. 

By optimizing vehicle performance, DP helps reduce 
idle time, optimize utilization, and streamline work sched-
ules to minimize energy consumption during transporta-
tion operations. 

DP helps to efficiently allocate resources such as fuel 
and time across transportation networks, plan deliveries 
and vehicle routes to minimize energy consumption, and 
increase overall efficiency. Benefits and Impact 

DP ensures that optimal subproblem solutions con-
tribute to overall optimal solutions by providing efficient 
solutions to complex optimization problems. 

DP preserves subproblem solutions, reducing redun-
dant computations and increasing computational effi-
ciency. 

DP adapts to changing conditions, making it suitable 
for real-time decision-making during transportation op-
erations. 

DP may face scalability and computational complexity 
issues for larger problems. 

Balancing optimal solutions and computational effi-
ciency requires careful consideration of tradeoffs. 

The applicability of DP may be limited by compu-
tational resources and real-time constraints in dynamic 
transportation systems.

As technology advances, DP algorithms continue to 
evolve. Future developments are aimed at solving scal-
ability problems, increasing computational efficiency, and 
integrating DP with new technologies to improve trans-
portation efficiency and sustainability. 

Dynamic programming is becoming the main tool for 
optimizing energy management in transportation systems. 
Its use in route optimization, resource allocation, and 
operations planning allows us to look to a future where 
transportation is not only efficient, but also environmen-
tally conscious. By breaking down complex problems 
into manageable subproblems, DP algorithms guide us to 
reduce environmental impact and optimize energy con-
sumption, creating a more sustainable and efficient trans-
portation ecosystem.  
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10. Metaheuristic Algorithms

Metaheuristic algorithms represent a class of innova-
tive and versatile optimization methods that go beyond 
traditional problem-solving techniques. Designed to 
solve complex optimization problems, including energy 
management in transportation systems, these algorithms 
provide dynamic and adaptive solutions to minimize fuel 
consumption, optimize routes, and reduce environmental 
impact.  

Metaheuristics are high-level strategies that guide the 
exploration of solution spaces to find near-optimal solu-
tions without guaranteeing the absolute optimum. These 
algorithms are characterized by their flexibility, adaptabil-
ity, and ability to efficiently traverse large solution spaces. 

Metaheuristic algorithms are ideal for finding energy-
efficient routes for vehicles, ships, or transportation net-
works. Using strategies such as exploration and exploita-
tion, these algorithms determine paths that minimize fuel 
consumption by taking into account various factors such 
as distance, traffic conditions, and energy efficiency. 

When optimizing fleet operations, metaheuristics help 
determine the optimal vehicle configuration, scheduling, 
and resource allocation to minimize fleet energy con-
sumption. 

Metaheuristic algorithms help design energy-efficient 
vehicles by optimizing engine performance, aerodynam-
ics, and vehicle weight, resulting in improved fuel effi-
ciency and reduced energy consumption. 

Benefits and Impact. 
Metaheuristics can solve a wide range of optimization 

problems, providing tailored solutions in dynamic trans-
portation systems. 

These algorithms efficiently explore large solution 
spaces, providing near-optimal solutions to complex op-
timization problems. 

Metaheuristics facilitate real-time decision making, 
enabling rapid response to changing conditions in trans-
portation operations. 

Optimization of metaheuristic parameters is critical for 
achieving optimal convergence rates and solution quality. 

Metaheuristics can be computationally intensive, re-
quiring optimization for scalability and efficiency. 

Combining multiple metaheuristics or integrating 
them with additional optimization techniques can in-
crease their effectiveness. 

As technology advances, metaheuristic algorithms 
continue to evolve. Future advances will address compu-
tational complexity, increase convergence, and integrate 
these algorithms with new technologies to improve trans-
portation efficiency and sustainability. 

Metaheuristic algorithms are innovative tools for 
transforming the management of energy consumption 
in transportation systems. Their application in route op-
timization, fleet management, and vehicle design allows 
us to look into a future where transportation becomes 

not only efficient, but also environmentally conscious. 
By using high-level strategies to explore decision spaces, 
metaheuristics guide us to reduce environmental impact 
and optimize energy consumption, contributing to a more 
sustainable and efficient transportation ecosystem. 

11. Heuristic Algorithms

Known for their simplicity and efficiency, heuristic 
algorithms serve as indispensable tools for solving op-
timization problems, including energy management in 
transportation systems. These algorithms provide practi-
cal and intuitive solutions to minimize fuel consumption, 
optimize routes, and reduce environmental impact, mak-
ing them a valuable asset in the quest for efficient and en-
vironmentally friendly transportation. 

Heuristics are problem-solving approaches that aim to 
find near-optimal solutions in a reasonable amount of time. 
They emphasize speed and practicality over guarantees of 
finding the absolute best solution, making them well suited 
to complex and dynamic systems such as transportation. 

Heuristic algorithms excel at finding good enough 
routes for vehicles, ships, or transportation networks. 
Using intuitive rules and strategies, these algorithms de-
termine the paths that minimize fuel consumption, taking 
into account factors such as distance, traffic conditions, 
and energy efficiency. 

When optimizing fleet operations, heuristics help de-
termine efficient vehicle configurations and plan and al-
locate resources to minimize fleet energy consumption. 

The heuristic facilitates the efficient allocation of re-
sources such as fuel and time among transportation net-
works, delivery schedules, and vehicle routes to minimize 
energy consumption and increase overall efficiency.

Benefits and Impact. 
Heuristics provide simple solutions that are easy to 

implement and interpret, making them valuable for real-
world applications. 

These algorithms are fast, providing practical solutions 
in a reasonable time frame for dynamic transportation 
systems. 

Heuristics adapt to changing conditions and uncer-
tainties, making them suitable for rapid decision making 
in transportation operations. 

Heuristics cannot always guarantee the best solution, 
but focus on acceptable, near-optimal solutions. 

Trade-offs: The balance between solution quality and 
computational efficiency requires careful consideration. 

Combining different heuristic approaches or integrat-
ing them with other optimization methods can increase 
their effectiveness. 

As technology advances, heuristic algorithms continue 
to evolve and find new applications. Future developments 
aim to eliminate limitations, improve the quality of so-
lutions, and integrate heuristics with new technologies to 
improve transportation efficiency and sustainability. 
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Heuristic algorithms serve as pragmatic tools to revo-
lutionize energy management in transportation systems. 
Using intuitive rules and practical strategies, heuristics 
guide us to reduce environmental impact and optimize 
energy consumption, laying the foundation for a more 
sustainable and efficient transportation environment.

12. Rationale for Research Methods

Scientific research is the systematic analysis of phe-
nomena and processes, studying their influence of various 
factors and interactions in order to arrive at convincing 
and useful solutions for science and practice. Research 
methods include the use of induction and deduction, 
analysis, synthesis, and comparison of both theoretical 
and practical aspects. 

In this case, the theory explores algorithms for opti-
mizing energy consumption in transportation systems, 
including their characteristics, principles of operation, 
possible implementations, advantages and disadvantages 
to improve system efficiency. 

There are several research methods, but in this case an 
empirical approach was chosen to compare different algo-
rithms for optimizing energy consumption in transporta-
tion systems. This method is the most appropriate because 
it requires real measurements. It allows us to determine 
which algorithms work better in practice and to determine 
their relative effectiveness in research. 

The methodology of this study is a combination of 
methods used to describe the research. The main meth-
od chosen was the logical method of cognition, which is 
used to solve problems analytically, explain events and 
phenomena, describe problems and identify ways to solve 
them in empirical and theoretical tasks.

13. Comparison methods for energy saving criterion

Linear programming:
The energy efficiency formula for linear programming 

can focus on reducing energy consumption relative to the 
baseline or initial energy consumption.

Energy Eff
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Criteria: Operational performance 
Execution Time: Evaluate the time it takes each algo-

rithm to solve a given problem. 
Record the time in milliseconds or seconds that the 

algorithms take to complete their tasks. 
Solution Quality: Evaluate the quality or optimality of 

the solutions generated by each algorithm. 
Define a quantitative quality metric specific to 

the problem domain (e.g., distance traveled, fuel 

consumption, etc.) or use objective metrics (minimiza-
tion/maximization). 

Composite metric: Create a composite metric that in-
cludes both lead time and solution quality. 

Weight the metrics according to their relative impor-
tance.

Operat Perform
w Exec Time w Solut Qual

w w
_

_ _
�

� � �
�

1 2

1 2
,

where w1, w2 represent the weights assigned to execution 
time and solution quality, respectively. 

Measure and record the execution time of each algo-
rithm for different problem sizes or scenarios. 

Evaluate the quality of the solutions produced by each 
algorithm based on predefined metrics. 

Combine execution time and solution quality using a 
composite metric formula to obtain an overall operational 
performance score for each algorithm. 

Compare the aggregate scores of all algorithms to de-
termine which algorithms perform better in terms of op-
erational performance. This comprehensive evaluation 
helps you select the most effective algorithm(s) based on 
time efficiency and solution quality. 

Scalability and Adaptability. 
Scalability: Measure how algorithm performance 

changes with increasing problem size. 
Evaluate runtime or memory consumption as problem 

size or complexity increases. 
Adaptability: Evaluate how well the algorithm handles 

changes or variations in the problem without significantly 
degrading performance. 

Test the performance of the algorithm in different sce-
narios or problem variations.

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Evaluate algorithm performance metrics (execution 
time, memory usage) for problems of varying size or com-
plexity. 

Track how these metrics change as the problem scales, 
indicating the scalability of each algorithm. 

Test the adaptability of the algorithms by making varia-
tions or changes to the problem parameters and observing 
how well they handle these changes without significantly 
degrading performance. 

Analyze and compare the scalability and adaptability 
of each algorithm based on observed changes in perfor-
mance as the size or complexity of the problem increases 
or under different variations of the problem scenarios. 
This evaluation will help you determine which algorithms 
scale well and adapt effectively to different situations.

Real-time implementation 
Binary evaluation: Determine if the algorithm can sat-

isfy real-time constraints. 
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Assign a binary value: 1 if the algorithm can be imple-
mented in real time, 0 if not. 

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Estimate the execution time of each algorithm under 
different scenarios or problem sizes. 

Set a threshold or benchmark for real-time imple-
mentation (e.g., execution time less than a certain limit is 
considered real-time). 

If an algorithm's execution time consistently meets the 
defined threshold across all scenarios, mark it as real-time 
(1) or not (0). 

Compare the binary score of each algorithm to de-
termine its suitability for real-time implementation. 
Algorithms with a "1" are suitable for real-time execution, 
while algorithms with a "0" may not meet real-time con-
straints. This comparison will help you identify algorithms 
that are suitable for real-time applications.

Computing requirements for real-time implementation. 
Time complexity: Measure the time complexity of an 

algorithm, typically expressed in Big O notation, to un-
derstand how its execution time grows with the size of the 
input data. 

Space complexity: Estimate the space requirements of 
an algorithm by specifying the memory or storage it con-
sumes as the problem size increases. 

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Analyze the time complexity of each algorithm, deter-
mining its efficiency relative to the size of the input. 

Estimate the space complexity by understanding the 
memory or storage requirements as the problem grows. 

Express the time and space complexity for each algo-
rithm using Big O notation or appropriate mathematical 
expressions.

Compare the time and space complexity of the algo-
rithms to determine their computational requirements for 
real-time implementation. Algorithms with lower time 
and space complexity (e.g., lower Big O values) are gener-
ally more suitable for real-time implementation in trans-
portation systems due to their efficient use of resources. 
This comparison will help to identify algorithms suitable 
for real-time implementation. 

The cost-effectiveness evaluation of algorithms in-
volves evaluating their cost-effectiveness in achieving the 
desired improvements. Here is an approach to comparing 
algorithms based on the cost-effectiveness criterion: 

Criteria: Cost Effectiveness 
Cost: Estimate the costs associated with implement-

ing and running each algorithm. This may include initial 
setup costs, computing resources, and maintenance costs. 

Improvement Achieved: Measure the improvements or 
benefits achieved by applying the algorithm, such as re-
duced energy consumption, optimized decisions, or mini-
mized operational costs. 

Cost Effectiveness: Calculate the cost-effectiveness ra-
tio, which indicates the cost-effectiveness of the algorithm 
in achieving the improvements:

Econom Eff
Cost

Improv achiev
_

_
= . 

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Estimate the cost of implementing and maintaining 
each algorithm in a given scenario or problem domain. 

Measure the improvements achieved by applying each 
algorithm by quantifying the benefits or optimizations 
gained. 

Calculate the cost-effectiveness ratio using a formula 
for each algorithm, taking into account the ratio of costs 
incurred to improvements achieved. 

Compare the cost-effectiveness ratios of the algo-
rithms to determine which algorithms provide the best 
cost-effectiveness in terms of improvements. Algorithms 
with lower cost-effectiveness ratios, indicating greater im-
provements at lower cost, are considered more cost-effec-
tive. This comparison will help you select the algorithms 
that provide the best balance of cost and benefit.

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Estimate the cost of implementing and maintaining 
each algorithm in a given scenario or problem domain. 

Measure the improvements achieved by applying each 
algorithm by quantifying the benefits or optimizations 
gained. 

Calculate the cost-effectiveness ratio for each algo-
rithm using a formula that takes into account the ratio of 
costs incurred to improvements achieved. 

Compare the cost-effectiveness ratios of the algo-
rithms to determine which algorithms provide the best 
cost-effectiveness in terms of improvements. Algorithms 
with lower cost-effectiveness ratios, indicating greater im-
provements at lower cost, are considered more cost-effec-
tive. This comparison will help you select the algorithms 
that provide the best balance of cost and benefit.

Durability and reliability. 
Robustness: Measures the ability of an algorithm to 

consistently produce correct and reliable results across 
different scenarios or data sets. 

Stability: Evaluate the stability of an algorithm by 
checking how sensitive it is to changes in input data or 
parameters. A stable algorithm provides consistent perfor-
mance despite variation. 
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Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Run multiple trials with different data sets or scenarios 
to evaluate the consistency of results produced by each al-
gorithm. 

Introduce variations or perturbations in the input pa-
rameters to evaluate the stability of the algorithms. 

Quantify reliability and stability metrics for each algo-
rithm based on observed behavior, error rates, or devia-
tions from expected results.

Comparative analysis: Compare the reliability and sta-
bility scores of algorithms to determine which ones con-
sistently produce reliable results across different scenarios 
or data sets and exhibit stable behavior in response to 
changes. 

Algorithms with higher consistency, lower error rates, 
and less sensitivity to input variations are considered 
stronger and more reliable. 

This comparison helps identify algorithms that consis-
tently produce reliable results and are less prone to bias or 
error, highlighting their strength and reliability. 

Regulatory compliance. 
Evaluate the result: Evaluate the results or solutions 

generated by algorithms against regulatory standards or 
constraints. This may include ensuring that solutions meet 
certain legal or security requirements. 

Industry Standards: Analyze the extent to which the 
algorithm's results are consistent with industry guidelines, 
regulations, or best practices. For example, in transporta-
tion systems, algorithms must comply with safety proto-
cols or environmental regulations.

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Examine the results or solutions produced by each al-
gorithm in the context of the regulatory requirements ap-
plicable to the transportation system or related domain. 

Verify that the solutions provided by the algorithms 
comply with established regulations, safety standards, or 
industry norms. 

Quantify the level of compliance achieved by each al-
gorithm based on the alignment of its results with regula-
tory requirements. 

Benchmark: Compare the level of compliance demon-
strated by each algorithm to determine which produce re-
sults that better meet regulatory requirements or industry 
standards. 

Algorithms that produce solutions that are closer to 
the required regulations or standards are considered more 
compliant. 

This comparison helps to assess the degree to which 
the results of each algorithm meet the required regulatory 

requirements or industry standards in the area of trans-
portation systems.

Convenience and Integration. 
Ease of implementation: Evaluate the ease and sim-

plicity of implementing each algorithm into existing sys-
tems or frameworks. 

Compatibility: Evaluate how well the algorithm inte-
grates with different platforms, technologies, or software 
architectures without requiring significant modifications. 

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms: 

Analyze the implementation process for each algo-
rithm, taking into account the ease of adaptation into ex-
isting systems. This may include assessing the complexity 
of code integration or program dependencies. 

Evaluate the compatibility of the algorithms with dif-
ferent software architectures or platforms. Algorithms that 
can be easily integrated with minimal customization are 
more convenient. 

Quantify the level of usability and integration for each 
algorithm based on implementation complexity and com-
patibility metrics.

Benchmark: Compare the usability and integration 
scores of algorithms to determine which offer smoother 
integration processes and better compatibility with exist-
ing systems. 

Algorithms with higher usability and integration 
scores, indicating easier implementation and seamless in-
tegration, are considered more usable and compatible. 

This comparison will help select algorithms that are 
easier to implement and integrate into transportation 
systems or related structures, reducing the complexity of 
adoption and ensuring smooth integration. 

User Adaptability. 
User interface and interaction: 
Evaluate the accessibility and usability of interfaces or 

tools associated with the implementation of these algo-
rithms. 

User training and support: Evaluate the ease of learn-
ing and using the algorithms, including the availability of 
documentation, tutorials, or support materials. 

Applications: Linear programming, genetic algo-
rithms, ant colony optimization, particle swarm optimiza-
tion, annealing simulation, dynamic programming, heu-
ristic algorithms, metaheuristic algorithms:

Evaluate the interfaces or tools provided with each al-
gorithm, considering their intuitiveness, simplicity, and 
ease of use. 

Analyze the availability and quality of support materi-
als (documentation, tutorials, etc.) to facilitate user un-
derstanding and implementation. 

Quantify user adoption for each algorithm based on 
UI usability metrics and the availability of comprehensive 
support materials. 

Anhelina Shemrikovych, Оleksandr Samantsov, Oleksii Nazarov, Nataliia Nazarova



77

Comparative analysis: Compare the usability scores 
of algorithms to determine which algorithms offer more 
user-friendly interfaces and better support resources. 

Algorithms with higher usability scores, indicating eas-
ier-to-use interfaces and comprehensive support materi-
als, are considered more user-friendly. 

This comparison will help select algorithms that pro-
vide users with interfaces and resources that are easy to 
understand, learn, and implement, thereby increasing 
overall user adaptability.

Conclusions

In the course of this task, the subject area was ana-
lyzed and algorithms for optimizing energy consumption 
in transportation systems were considered. The advantag-
es and disadvantages of the algorithms were described and 
evaluation criteria were proposed. 

As a result, a research report was prepared, which in-
cluded the formulated measurable criteria for comparing 
the algorithms, described in detail and argued the use of 
each of them and when they could be neglected. The key 
metrics chosen to compare the technologies were 

–	 Energy savings; 
–	 Reduction of environmental impact; 
–	 Operational efficiency; 
–	 Scalability and adaptability; 
–	 Real-time implementation; 
–	 Computational requirements of the algorithm for 

real-time implementation in transportation systems; 
–	 Economic efficiency; 
–	 Durability and reliability; 
–	 Regulatory compliance; 
–	 Ease of use and integration; 
–	 User adaptability.
In the current study, we proposed relevant ways to 

measure each of the presented metrics, formulated crite-
ria, and mathematical formulas used to calculate the nu-
merical values of these metrics.
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