IH®OPMAI[ITAHI TEXHOJIOTII. MAIITHHHE HABYAHHS. BA3H JIAHUX

VIK 004.4: 004.4

Mazurova Oksana!, Ramazanov Rasul?

1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,
oksana.mazurova@nure.ua; ORCID ID: https://orcid.org/0000-0003-3715-3476

INTELLIGENCE

2 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,
rasul.ramazanov@nure.ua; ORCID ID: https://orcid.org/0009-0000-8656-1869

RESEARCH ON TECHNOLOGIES FOR ACCESSING RELATIONAL DATABASES
USING MS SQL SERVER

In the modern world, hundreds of large projects are developed every day, and thousands of startups with a wide variety
of topics appear, developers start creating their projects, companies modernize old projects. Each of these activities has
something in common - the way they store and manipulate data. Almost all modern projects have a database, because it
becomes simply impossible to interact with the client without it. Now, no matter what your application, service, game
or anything else is, it is necessary for the user to be able to have his account page, save progress, anything that needs to
be saved locally or in the cloud or on the server. And a modern developer can use the database directly or through special
database access technologies, including through ORM or Micro ORM. The subject is the study of access technologies
for working with relational databases. The goal is to compare the efficiency, flexibility and use of various access technolo-
gies when working with the MS SQL SERVER database. Task: to investigate access technologies to MS SQL SERVER.
Collect the technical characteristics of queries when using different database access technologies. Compare the results.
Methods: analysis of MS SQL SERVER access technologies, experimental research, statistical analysis of results. Results:
it is shown how access technologies such as ORM Entity Framework, Micro ORM Dapper and ADO.NET differ in use,
it is shown that the performance is most effective in ADO.NET, followed by Dapper and in third place among the access
technologies used in terms of efficiency is Entity Framework . But it is shown how the type of request contributes to the
efficiency of execution by various technologies. Conclusions: ORMs are used in cases where it is necessary to work with
a database using an object-oriented approach. ORM transforms data from the database into objects in the application,
which facilitates interaction with the database and reduces the amount of code that must be written to work with the
database. Micro ORMs are used when the speed of execution of requests to the database is required, or if the project
is small in scope and does not need the full functionality of ORM. Micro ORM is smaller, faster and easier to use than
ORM. ADO.NET is recommended when direct interaction with databases is needed. ADO.NET allows you to create
multithreaded and distributed applications, interact with databases using transactions, and manage data security. It is
more extensible and scalable than ORM and Micro ORM, but requires more code to interact with the database.

ACCESS TECHNOLOGY; DATABASE; MS SQL SERVER; ENTITY FRAMEWORK; DAPPER; ADO.NET.

0.0. Maz3syposa, P.III. Pama3zanos. JlocizKeHHs T€XHOJIOTIi JOCTYIMy 10 pesiauiifHuX 0a3 JaHUX MiJ KepyBaHHIM
MS SQL SERVER. ¥ cyuyacHOMY CBiTi KOXKHOTO JHS PO3pPOOJISIIOThCSI COTHI BEJIMKHUX MPOEKTIB, 3’ SIBJSIOThCS TUCSAYi
cTapTaniB i3 Hallpi3HOMaHITHIIIMMU TeMaTUKaMU, pO3POOJISTIOTHCSI HOBI TPOEKTH Ta MOJIEPHE3YIOTh CTapi. Maiixe Bci
MOAiOHI MPOEeKTH MaroTh 06a3y JaHUX, 00 30epirat Ta 0OpoOJAATH JaHi O6e3 Hei cTae MPOCcTo HeMOXIMBO. CyJacHUA
PO3POOHUK Ma€ 3MOTY BAKOPHUCTOBYBATH 0a3y JaHUX Yepe3 CIielliaabHi TEXHOJIOTii JOCTYITY 10 HUX, B TOMY YMCITi Yepe3
ORM a60o Micro ORM. IlpeaMeToM AOCTIIKEHHST € TEXHOJIOTIN JOCTYITy 10 pelsauiiiHuX 0a3 naHuX, sKi 3aiiMaloTh
3HAUYMMI TTO3ULIil B MPOrpaMHUX pillieHHsIX. MeTa poOOTU — TMOPIBHSATU MPOAYKTUBHICT BUKOPUCTAHHS HAMOIbIL
e(eKTUBHUX Ha ChOTOIHI TEXHOJIOTIii JoCcTyIy a0 0a3u gaHux mig kepyBaHHsaM MS SQL SERVER Ta po3pooutu pe-
KOMEeH/allii, 1110 J03BOJISITh PO3POOHMKAM 3pOOUTH OLIbLI IPYHTOBHUIA iX BUOip. MeToau: aHali3 TEXHOJIOTii JOCTy Iy
1o 6a3 nanux MS SQL SERVER, ekcniepuMeHTaIbHe TOCTIKEHHSI, CTATUCTUYHUMI aHali3 pe3ybTaTiB. PesyabraTu:
3i0paHO BaroMi METPUKHU Mill Yac eKCIEePUMEHTATBLHOTO JOCTIKEHHS MPOAYKTUBHOCTI TAKMX TEXHOJIOTIi JOCTYIY SIK
ORM Entity Framework, Micro ORM Dapper Ta ADO.NET; po3po6ieHo pekoMeHallii CTOCOBHO BUKOPUCTaHHS LIUX
TEXHOJIOTi Ta BUOOPY HaibiblI e(heKTUBHOTO BapiaHTy B 3aJIEXKHOCTI BiJl BUiB 3aMUTIiB 10 0a3 naHux. BucHoBKu:
Micro ORM 6isblll peKOMEHI0BaHa 0 BUKOPUCTAHHS, KOJIM KPUTUYHOIO € IIBUAKICTh BUKOHAHHS 3aIUTiB 10 0a3u
JlaHuX, abo SIKII0 MPOEKT MAa€ HEBEJIUKUI 00csT Ta He moTpedye noBHoro GyHkiioHary ORM; ADO.NET pekomeH-
JIOBAaHO B pa3i, KoM NOTPiOHO mpsiMa B3aeMois 3 6azamu naHux; ADO.NET no3BoJisie cTBoproBaT 6ararornoTo4yHi
Ta PO3MOMAJIEH] T0aTK1, BUKOPUCTOBYBaTU MEXaHi3M TpaH3aKlliii Ta KepyBaTu 0e3eKoro AaHuX. BiH € Oiibli po3-
IMpeHUM Ta MaciTaboBaHuM, Hixk ORM ta Micro ORM, ajie Bumarae 6iJibliie Komy Uit B3a€MOIIi 3 6a3010 TaHUX.

TEXHOJIOI'TA AOCTVYITY; BASA JAHUX; MS SQL SERVER; ENTITY FRAMEWORK; DAPPER; ADO.NET.

DOi 10.30837/ bi.2023.1(99).01

Introduction

In today's world, the development of almost any soft-
ware application is closely related to the use of databases
(DB) [1, 2]. Regardless of the type of application, service,
or game, there is always a need for users to have their own
accounts, store progress, or other information locally, in
the cloud, or on a server. Therefore, a modern developer

must choose and utilize a specific database access tech-
nology, including ORM or Micro ORM, when working
with databases in their projects.

For developers, the question arises as to which data-
base access technologies are best to use and which ones
are most suitable for their system. Traditional analysis of
documentation on various database access technologies

3

BIOHIKA IHTEJIEKTY. 2023. Ne 1(99). C. 3-10

XHYPE

and general recommendations provided by developers of-
ten do not provide a detailed description of the technical
characteristics regarding the usage of these technologies
within a specific stack of software tools.

One of the widely adopted solutions for working with
relational databases is developing on the .NET platform
using the Microsoft SQL Server database management
system (DBMS) [3-4]. Currently, the most popular da-
tabase access technologies in such an environment are
Object-Relational Mapping (ORM) tools like Entity
Framework, Micro ORM solutions such as Dapper, and
the well-established ADO.NET technology.

When designing a system that interacts with SQL da-
tabases, it is crucial for the developer to have a clear un-
derstanding of the database's logic and the tools offered
by the chosen database access technology [1, 5]. Due to
limited practical information available about specific soft-
ware connections, many commercial projects hesitate to
adopt new database access technologies, as implementing
such a transition requires significant time for performance
modeling and data migration [6].

Therefore, a relevant direction for research is to es-
tablish clearer, practically validated recommendations for
using database access technologies based on experimental
measurements and comparisons of significant database
performance metrics [7].

1. Analysis of the problem and existing methods

Relational databases have been widely used until now
for developing applications that require strong support for
ACID transaction properties, such as in the fields of bank-
ing, healthcare, and so on. With the emergence of the first
technologies for accessing relational databases, many new
trends and improvements to existing approaches have ap-
peared [8, 9].

On the .NET platform, there are several ORM frame-
works (Object-Relational Mapping) [10-11] that allow for
easy and convenient interaction with relational databases.
A thorough analysis has been conducted on several of
them, namely:

— Entity Framework (EF) is an ORM framework de-
veloped by Microsoft for the .NET platform. EF allows
developers to work with databases using an object-orient-
ed approach rather than writing SQL queries. It supports
various relational databases, including Microsoft SQL
Server [12-13], Oracle, and MySQL;

— NHibernate is a popular ORM framework for the
NET platform. It allows developers to work with data-
bases by mapping objects to database tables, making the
interaction much simpler;

— Dapper is a lightweight ORM framework developed
by StackExchange. It falls under the category of Micro
ORM and enables developers to have more precise control
over the database interaction process by using simple SQL
queries;

4

— DevExpress XPO is an ORM framework that pro-
vides a wide range of functionality for interacting with re-
lational databases, including code generation based on the
database schema.

These frameworks enable developers to interact easily
and conveniently with relational databases on the .NET
platform, while also providing support for various func-
tional capabilities such as data caching, lazy loading, data
migrations, and more.

The rapid and widespread adoption of ORM and
Micro ORM is driven by their simplicity. They allow pro-
grammers to work with databases using familiar objects
and programming languages, instead of complex SQL
code. ORM enables developers to interact with databases
through an object-oriented interface, making the process
more intuitive. Additionallyy, ORM automatically gener-
ates SQL code for interacting with the database, making
the development process faster and less error-prone.

Micro ORM is a simplified version of an ORM that
provides only basic database interaction functionalities.
This makes it even simpler and easier to use, resulting in
faster execution of database queries and reduced memory
consumption.

As a result, the simplicity of working with ORM and
Micro ORM [14] allows developers to focus on develop-
ing program functionality rather than spending time writ-
ing and testing complex SQL queries to the database.

Additionally, the well-established object-oriented
technology ADO.NET [15-16], which is part of the .NET
Framework, is quite commonly used on the .NET plat-
form. ADO.NET enables developers to establish connec-
tions with a database, execute SQL queries, and retrieve
query results in the form of a DataSet or DataReader.

During the selection of an access technology, one can
rely on research dedicated to the characteristics of ac-
cess technologies and their architectural features. For in-
stance, in a three-tier architecture, ORM such as Entity
Framework resides in the Data Access Layer and serves as
a wrapper that communicates with the database and maps
data from the database to the data layer model used by
the developer. This accelerates development and data ma-
nipulation processes.

In addition to the architectural considerations, de-
velopers can also rely on analyzing current trends in da-
tabase development [1, 17]. When considering the .NET
platform, the two most popular ORM technologies are
Entity Framework and the micro ORM Dapper. Until re-
cently, Dapper and ADO.NET were comparable in terms
of performance, but with each new version of .NET de-
veloped by Microsoft, the efficiency of development us-
ing Entity Framework has been increasing and, in some
cases, may surpass Dapper and ADO.NET. The availabil-
ity of open-source products has fostered a large commu-
nity of developers dedicated to the advancement of not
only Entity Framework but also other ORM and micro

RESEARCH ON TECHNOLOGIES FOR ACCESSING RELATIONAL DATABASES USING MS SQL SERVER

ORM solutions. However, it is unfortunate that some ac-
cess technologies are not open-source. ORM has become
so prevalent that some developers may not be familiar with
SQL and rely solely on ORM for writing queries. This can
be a significant problem because such developers become
heavily dependent on a single ORM and may not recognize
alternative options or understand the criteria for selecting
more efficient technologies for specific software solutions.

2. Objective of the Work

The purpose of this article is to conduct an experi-
mental investigation of database access technologies on
the .NET platform, specifically focusing on a relational
database managed by the MS SQL Server DBMS. The
goal is to evaluate their productivity and develop practi-
cal recommendations for their effective usage in various
software projects.

For the experimental research, the most popular rep-
resentatives of their respective classes have been selected:
the ORM Entity Framework, the Micro ORM Dapper,
and the object technology ADO.NET.

This research requires the following steps to be con-
ducted: Analysis of the domain-specific application area
and designing a database based on it for further experi-
mental research.

— Development of software solutions based on Entity
Framework, Dapper, and ADO.NET database access
technologies.

— Conducting experimental research on the perfor-
mance of implemented database access technologies and
providing recommendations on the suitability of using
these technologies.

The evaluation of the effectiveness of using database
access technologies should be conducted considering the
following metrics: query execution speed (in milliseconds),
query execution speed (in ticks), and consumed resources
of the working memory (in bytes).

3. Materials and Methods

The chosen subject area for designing the database for
the research is the field of e-commerce. E-commerce, or
electronic commerce, refers to the process of buying and
selling goods and services over the Internet. It can include
online stores, internet auctions, digital goods (such as mu-
sic and videos), online booking and payment services (such
as hotels, airline tickets, etc.), electronic marketplaces,
and more. For conducting the experiments, a simplified
database [18] for an online clothing store was designed.

A database containing the following basic concepts
and their interrelationships has been developed for con-
ducting experiments:

Season: Can be described by attributes such as "name"
and "start date" (modeled by the "Seasons" table);

— Catalog: Within a season, there can be multiple
catalogs of different categories (the "Catalogs" table);

— Category: Has an attribute "name" (the "Categories"
table);

— Product: Can be described by attributes such
as name, price, color, description, and category (the
"Products" table);

— Good: Represents the relationship between a prod-
uct and a catalog (the "Goods" table);

— Order: References the user who placed the order
and the products included (the "Orders" table);

— User: Can be described by attributes such as name,
email, and phone number (the "Users" table).

Classes were designed [16] for the use of Entity
Framework and Dapper technologies based on the de-
veloped database model. The Code First approach was
employed during the creation of software solutions using
these technologies. The diagram of the developed classes
can be seen in Fig. 1.

The solutions for the research were developed as web
applications using ASPNET Core Web API. In general,
the architecture of ASP.NET Core Web API allows for the
development of fast, scalable, and reliable web services that
can be integrated into various applications and platforms.

Experimental research planning was conducted, and
queries were developed as the basis for measuring perfor-
mance metrics and investigating the productivity of access
technologies.

The following queries were developed and used for
conducting series of experiments:

— GetUsers query: retrieves all fields from the Users
table.

— GetUserWithOrders query: retrieves data that
requires joining the Users, Orders, Products, Goods,
Catalogs, and Seasons tables (see Fig. 2).

— GetSeasonsQuery: retrieves the count of products
present in a season; this query utilizes join operations be-
tween tables and the aggregate function Count() (see Fig. 3).

— ultiple aggregate functions.

— CreateCategory query: creates a new category with
a specified name.

— DeleteCategory query: deletes a category with a
specified name.

4. Research results and their discussion

Let's consider the results of executing queries for the
investigated technologies: Entity Framework, Dapper,
and ADO.NET. MS SQL Server was used as the database
management system, and the tables in the database con-
tained 1000 and 10,000 records, respectively.

For the purpose of conducting a pure research study,
caching was disabled for Entity Framework. Caching al-
lows Entity Framework to execute the same query in
a very short time, which is one of the advantages of an
ORM. By disabling caching, we can observe the actual
performance of Entity Framework without the influence
of cached results.

Mazurova Oksana, Ramazanov Rasul

| Season
Class

4 public
& Catalogs
F Date

K ud
F Name

| Product
Class

4 public
Category
Categoryld
Color
Description

Goods

SELECT users.Name as UserName, products.Id as Productld,
products.Name as ProductMame, orders.Count, seasons.Date

SELECT seasons.Name AS Seasonllame, seasons.Date, catalogs.Id AS Catalogld, COUNT(goods.CatalogId) AS GoodsCount

Id
Name
Price

Trerrrererer

Sex

FROM Users as users,
Orders as orders,
Products as products,

Goods as goods,

Catalogs as catalogs,
Seasons as seasons

WHERE orders.UserlId
AND orders.GoodId =

| Category A | User
Class Class
4 public 4 public
K Catalogs & Email
& ud F
K Name K& Name
F Products & Orders
& Phone
| Order A | Good
Class Class
4 public 4 public
K Count F Catalog
F Good F Catalogld
K Goodld F i
K Id & Orders
K User & Product
K Userld & Productld
K Value

(Catalog

Class

4 public
Category
Categoryld
Goods

Id

Season

Yrerrhe

Seasonld

Fig. 1. Class diagra

users.Id
goods . Id

AND goods.Productld = products.Id

AND goods.Catalogld

catalogs.Id

AND catalogs.Seasonld = seasons.Id
AND seasons.Date < GETDATE()

GROUP BY users.Name, products.Id, products.Name, orders.Count, seasons.Date

FROM Seasons AS seasons

Fig. 2. Query GetUserWithOrders

J0IN Catalogs AS catalogs ON catalogs.Seasonld = seasons.Id
J0IN Goods AS goods ON goods.(Catalogld = catalogs.Id
J0IN Products AS products ON products.Id = goods.Productld
GROUP BY seasons.llame, seasons.Date, catalogs.Id

In the research, it was also decided to measure the
performance metrics of queries for Dapper and ADO.
NET, taking into account the resources spent on data-
base connection and excluding the connection time. This
is reasonable because, in the case of Dapper and ADO.

6

Fig. 3. Query GetSeasonsQuerry

NET, the database connection is established explic-
itly by the developer when executing queries. Therefore,
the measurement of query performance includes the
time required for establishing the database connection.

Let's also note that the first query to the database takes

RESEARCH ON TECHNOLOGIES FOR ACCESSING RELATIONAL DATABASES USING MS SQL SERVER

longer to execute compared to subsequent queries because
there may be additional tasks to perform before executing
the query, such as query plan preparation and query opti-
mization. Query plan preparation is the process of creat-
ing an execution plan that outlines the necessary steps to
execute the query. It involves selecting the access method
for database tables, determining the join method for table
joins, and deciding the order of operations in the query.
Query optimization is the process of improving query per-
formance by modifying the query or utilizing additional
indexes to speed up data retrieval and selection. The ex-
ecution speed of the first query depends on the MS SQL
Server and the time it takes to establish a connection to
the database. The average query execution time for the
server and database residing in the same physical space
depends on the hardware and was computed based on
1000 runs in a series of experiments. Considering the con-
sumed resources is important to understand how much

memory is required for executing a specific query and to
properly configure the database server.

The performance evaluation of the queries was con-
ducted taking into account the following metrics:

— speed of execution of the first launch (ticks);

— speed of execution of the first launch (ms);

— average request execution time (ticks);

— average request execution time (ms);

— spent RAM resources (bytes) when executing the
request.

Fig. 4 shows the results of a series of experiments on
the GetUsers request. We see that the average execution
time is equal to one for all access technologies, taking
into account the execution of the request with and with-
out connection to the database server. This means that the
request is running too fast to be measured in ms, which
shows us how beneficial it is to use more precise units of
measurement like ticks.

Request Getlsers

Entity Framework |Dapper |Dapper W/O connection [ADO.NET |ADO.NET W/O connection
First run (ticks) 2005217(|3851348 3392629| 3216040 206956
First run (ms) 182 400 352 321 20
Average execution time (ticks) 5623 5806 6181 4702 3209
Average execution time (ms) 1 1 1 1 1
Spent memory (bytes) 8512 4571 4384 4544 704

Fig. 4. Results of experiments with the request GetUsers

The first query run takes significantly longer than all
other queries. If we take the ratio of the speed of the first
request in ticks, then in ADO.NET w/o connection the
execution speed is the best. This means that the server
took less time to process the first request in ADO.NET
w/o connection than for other access technologies. Also,
the experiment made it possible to observe significantly
lower costs in ADO.NET w/o connection for the first
start in ms.

If we look at the average execution time in ticks, we
will see that it will be less for ADO.NET and ADO.NET
w/o connection than for Entity Framework. Dapper by
this metric remains the longest running.

In terms of memory consumption, ADO.NET w/o
connection consumed significantly less resources, namely
704 bytes. Then comes Dapper w/o connection, followed
by ADO.NET and Dapper, and Entity Framework re-
quired the most resources, almost twice as much as ADO.

NET and Dapper.

Fig. 5 shows the results of experiments with
GetUsersWithOrders queries. Execution of this request
is also faster than can be measured in ms. Let's look at
the measurements in ticks. The first run shows the same
ratios as the GetUsers query, namely ADO.NET w/o
connection is the fastest, followed by Entity Framework
and ADO.NET, followed by Dapper w/o connection and
Dapper. The same behavior for the first run can be seen
in the execution speed in ms. If you look at the average
query execution time in ticks, then ADO.NET w/o con-
nection is in first place, followed by ADO.NET, Dapper
w/o connection and Dapper, and Entity Framework took
the longest time to execute this query. According to the
consumed memory resources, it can be found that ADO.
NET with and without connection requires much less
memory than Dapper, and Entity Framework consumes
the most of this resource.

Request GetUserWithOrders

Entity Framework |Dapper |Dapper W/O connection |ADO.NET |ADO.NET W/O connection
First run (ticks) 255544214138181 4002818| 3283229 244381
First run (ms) 260 391 352 346 27
Average execution time (ticks) 15413| 12814 11782 11867 8633
Average execution time (ms) 1 1 1 1 1
Spent memory (bytes) 12496| 10552 10329 1731 1324

Fig. 5. Results of experiments with the request GetUsersWithOrders

Mazurova Oksana, Ramazanov Rasul

Fig. 6 shows the results of experiments with the
GetSeasonsQuerry query. The speed of execution of the
first run is similar to the GetUsers and GetUsersWithOrders
queries. But according to the average request execution
time, it can be emphasized that ADO.NET w/o con-
nection and Dapper w/o connection are executed the

fastest, followed by ADO.NET and Dapper, and Entity
Framework, which executes in almost 9 times longer than
ADO.NET w/o connection. According to the used re-
sources, we can also say that ADO.NET and Dapper use
3 times less memory resources than Entity Framework.

Request GetSeasonsQuerry

Entity Framework |Dapper |Dapper W/O connection |[ADO.NET |ADO.NET W/O connection
First run (ticks) 2510343|4273887 3499499| 3447487 246980
First run (ms) 248 414 355 351 40
Average execution time (ticks) 44839 8590 6888 7092 5319
Average execution time (ms) 1 1 1 1 1
Spent memory (bytes) 5048 1720 1688 1688 896

Fig. 6. Results of experiments with the request GetSeasonsQuerry

Fig. 7 shows the results of experiments with the
GetSeasonsTotalPrice query. In terms of the speed of the
first run, the situation is similar to the previous requests,
judging by the metrics in ticks and ms. In terms of av-
erage execution time, ADO.NET w/o connection and

ADO.NET lead, followed by Dapper w/o connection and
Dapper, and the Entity Framework query took the long-
est, which lagged behind ADO.NET w/o connection by
almost 2 times.

Request GetSeasonTotalPrice

Entity Framework |Dapper |Dapper W/O connection |ADO.NET |ADO.NET W/O connection
First run (ticks) 2083407|4065444 3811651 4184960 199574
First run (ms) 281 441 359 349 27
Average execution time (ticks) 13621 9117 9328 8586 7400
Average execution time (ms) 1 1 1 1 1
Spent memory (bytes) 9992 3022 2978 2764 1586

Fig. 7. Results of experiments with the request GetSeasonsTotalPrice

Fig. 8 shows the results of experiments with the
CreateCategory request. Technologies can be divided ac-
cording to the execution time of the first launch as follows:
ADO.NET w/o connection, Entity Framework, ADO.
NET, Dapper w/o connection and Dapper. According to
the average execution time in ms, you can see that Entity
Framework lags behind significantly. A more revealing

ratio can be obtained by comparing the average execution
time in ticks, where it can be seen that ADO.NET w/o
connection is 2.6 times faster than Entity Framework.
According to the used memory, similar to previous re-
quests, Entity Framework uses 3 times more resources
than other access technologies.

Request CreateCategory

Entity Framework |Dapper |Dapper W/O connection |[ADO.NET |ADO.NET W/O connection
First run (ticks) 1592580|3900297 3601395(3294704 214774
First run (ms) 161 421 329 313 16
Average execution time (ticks) 26597 11690 11098 10710 9817
Average execution time (ms) 2.5 1.5 1 1 1
Spent memory (bytes) 7664 2554 2474 2468 1238

Fig. 9

Fig. 8. Results of experiments with the request CreateCategory

shows the results of experiments with

This can be seen by the average execution time in ticks

DeleteCategory queries. By the time of execution of the
first run, the same sequence of technologies is preserved,
as in the previous requests. But in terms of average execu-
tion time, Entity Framework is now the fastest: 5 times
faster than Dapper and 4 times faster than ADO.NET.

8

and ms. In terms of memory usage, everything is similar
to the previous queries, where Entity Framework uses
many times more memory than the other investigated
technologies.

RESEARCH ON TECHNOLOGIES FOR ACCESSING RELATIONAL DATABASES USING MS SQL SERVER

Request DeleteCategory

Entity Framework |Dapper |Dapper W/O connection |ADO.NET |ADO.NET W/O connection
First run (ticks) 2949541(3714834 3741236 3655405 196057
First run (ms) 273 375 318 329 17
Average execution time (ticks) 15092 77176 73560 71484 63049
Average execution time {ms) 1.3 7 6.9 6.4 6.7
Spent memory (bytes) 9064 2288 1934 936 772

Fig. 9. Results of experiments with the request DeleteCategory

Based on the analysis of the results of the experiments
and taking into account the provided functionality, sepa-
rate recommendations can be formulated for each of the
technologies.

ADO.NET technology has shown itself to be very re-
source-efficient compared to the ORM and Micro ORM
studied. The execution of the request is almost the fastest
for almost all types of requests. Certain problems can arise
only due to the incorrect writing of queries in the SQL
language. That is, the use of this technology requires the
developer to have some experience with SQL. Other com-
plications may arise when it is necessary to take the data
returned from the database, because there is no internal
automapping in ADO.NET.

Dapper technology showed itself very well in the speed
of execution of requests, where there was almost no lag
behind ADO.NET. This Micro ORM outperformed
Entity Framework by several times. You can see from the
memory consumption why Dapper is considered a light-
weight Micro ORM. It consumes resources in almost the
same way as ADO.NET. As with ADO.NET, Dapper re-
quires SQL knowledge to use, but it has no problem with
automapping extracted data. This is a very useful tool that
even allows you to populate fields in custom classes from
Dapper extracted data belonging to other classes.

Entity Framework is a very popular ORM and it is ful-
ly confirmed by experiments why this is so. Thanks to the
internal functionality, you can use different development
approaches, such as Code First, DataBase and Model
First, perform database migrations, easily write queries
that the ORM will automatically send to the DB server.
But there are disadvantages to this. As you can see, the
more complex the query, the longer it took to use Entity
Framework compared to other access technologies. But
when the queries are simple, Entity Framework took less
time than Dapper.

5. Conclusions

In the work were investigated such database access
technologies as ORM Entity Framework, Micro ORM
Dapper and ADO.NET from the point of view of perfor-
mance when working with the popular RDBMS MS SQL
Server. A series of experiments was conducted to measure
the performance of database queries.

To conduct the research, a software solution was de-
veloped using the .NET platform, C# 7, ASPNET Core

Web API, Swagger. To conduct experiments, a relational
database in the field of e-commerce and a set of requests
for performing CRUD operations were designed, the per-
formance of which was investigated.

During the experiments, metrics were used regarding
the speed of the first request and the average speed in mil-
liseconds and ticks, the amount of memory spent on the
request (byte).

The research showed that none of the technologies
used can be called unequivocally the best. Based on the
results of the experiments and taking into account the
features of the functionality, we can conclude that if the
development of a simple application is planned or it is
necessary to speed up the execution of requests to the da-
tabase as much as possible, it is better to use Micro ORM
Dapper. If a large and complex program is being created,
and at the same time it is planned to use an object-ori-
ented approach, then ORM Entity Framework may be
the best choice. ADO.NET is more efficient for executing
complex queries, especially if they require optimization
or use special database functions, ADO.NET works at a
lower level of abstraction compared to Dapper and Entity
Framework and provides direct control over transaction
management, i.e. the ability to manually start, commit or
cancel transactions, which gives you more flexibility and
control over this process.

REFERENCES

[1] Filatov, V., & Semenets, V. (2018). Methods for Synthesis
of Relational Data Model in Information Systems Reengi-
neering Problems. In 2018 International Scientific-Practical
Conference Problems of Infocommunications. Science and
Technology (PIC S&T). IEEE.

[2] Maran, V., Machado, A., Machado, G. M., Augustin, 1., de
Oliveira, J. P. M. (2018), "Domain content querying using
ontology-based context-awareness in information systems",
Data and Knowledge Engineering, No. 115, P. 152—173. DOI:
10.1016/j.datak.2018.03.003.

[3] Michael Lee, Gentry Bieker: SQL Server 2008. DOI: https://
doi.org/10.1002/9781118257388.ch17

[4] Christian Nagel Professional C# 7 and .NET Core 2.0 DOI:
https://doi.org/10.1002/9781119549147.ch31

[5] Pérez-Castillo, R., De Guzman, I. G. R., Caivano, D., Piat-
tini, M. (2012), "Database schema elicitation to modernize
relational databases", ICEIS 2012 - Proceedings of the 14th

International Conference on Enterprise Information Systems,
P 126—132.

Mazurova Oksana, Ramazanov Rasul

[6] Maran M. M., Paniavin N. A., Poliushkin I. A. Alternative
Approaches to Data Storing and Processing. V International
Conference on Information Technologies in Engineering
Education (Inforino). 2020. P. 1—-4, DOI: https://doi.
org/10.1109/inforino48376.2020.9111708

[71 Renée M. P. Teate SQL for Data Scientists: A Beginner's
Guide for Building Datasets for Analysis. DOI: https://doi.
org/10.1002/9781119669388.chl

[8] Filatov, V., Radchenko, V. (2015), "Reengineering relational
database on analysis functional dependent attribute”, Pro-
ceedings of the X Intern. Scient. and Techn. Conf. "Computer
Science & Information Technologies" (CSIT’2015), 14-17
sept. 2015, Lviv, Ukraine, P. 85—88.

[9] Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., Ismaili, E,
(2018), “Comparison between relational and NOSQL data-
bases“, 41st International Convention on Information and
Communication Technology, Electronics and Microelectron-
ics (MIPRO), P. 216-221. DOI: https://doi.org/10.23919/
mipro.2018.8400041

[10] Ying Bai SQL Server Database Programming with Visual
Basic. NET: Concepts, Designs and Implementations. DOI:
https://doi.org/10.1002/9781119608493.ch3

10

[11] Ying Bai Oracle Database Programming with Visual Basic.
NET: Concepts, Designs, and Implementations. DOI: https://
doi.org/10.1002/9781119734529.ch3

[12] Itzik Ben-Gan. Microsoft SQL Server 2012 T-SQL Funda-
mentals - Microsoft Press, 1st edition July 15, 2012.- 442 c.

[13] Christian Nagel Entity Framework Core. DOI: https://doi.
org/10.1002/9781119549147.ch26

[14] Riadh Ghlala Analytic SQL in SQL Server 2014/2016. DOI:
https://doi.org/10.1002/9781119649540.ch1

[15] Ying Bai Practical Database Programming with Visual C#
.NET DOI: https://doi.org/10.1002/9780470567845.ch5

[16] Jonathan Eckstein, Bonnie R. Schultz Introductory Rela-
tional Database Design for Business, with Microsoft Access.
DOI: https://doi.org/10.1002/9781119430087.ch4

[17] Paulraj Ponniah Ph.D. Database Design and Development:
An Essential Guide for IT Professionals. DOI: https://doi.
org/10.1002/0471728993.ch1

[18] Bagui, S., Earp, R. (2011), Database Design Using Entity-
Relationship Diagrams (Foundations of Database Design),
Auerbach Publications, 371 P., ISBN 978-143-986-177-6.
DOI: https://doi.org/10.1201/9781439861776

The article was delivered to editorial stuff on the 15.02.2023

