
98

уДК 004.02 DOi 10.30837/ bi.2022.1(98).13

Iryna Kyrychenko1, Yehor Shamrai2
1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

iryna.kyrychenko@nure.ua, ORCID: 0000-0002-7686-6439
2 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

yehor.shamrai@nure.ua

ВCOMPARATIVE ANALySIS OF URL SHORTENING ALGORITHMS:
 PERFORMANCE CONSIDERATIONS IN THE APPLICATION DOMAIN

 OF WEB SEARCH AND INFORMATION RETRIEVAL TECHNOLOGy

This article provides an in-depth overview and comparative analysis of URL shortening algorithms, with a focus
on their performance and security. URL shortening is an important tool for creating concise versions of long URLs,
particularly in platforms with character limitations. However, the increasing prevalence of cyber threats has raised
concerns regarding the security of URL shortening. The paper examines a range of URL shortening algorithms, includ-
ing Hash-based and Randomized algorithms, and compares their effectiveness based on factors such as URL length,
randomness, and resistance to brute-force attacks. In addition, the article explores the security risks involved in URL
shortening and suggests strategies for mitigating them. The paper also includes a performance analysis of different URL
shortening algorithms, considering the time required to generate a shortened URL and redirect the user to the original
URL. Finally, the article discusses the challenges of evaluating URL shortening algorithms and outlines potential avenues
for future research in this area.

URL SHORTENING ALGORITHMS, PERFORMANCE EVALUATION, SECURITY CONSIDERATIONS,
HASH-BASED ALGORITHMS, PERFORMANCE EVALUATION, RANDOMIZED ALGORITHMS

Кириченко І.В., Шамрай Є.О. Порівняльний аналіз алгоритмів скорочення URL-адрес: Міркування щодо про-
дуктивності в прикладній області веб-пошуку та інформаційно-пошукових технологій. у цій статті представлено
детальний огляд і порівняльний аналіз алгоритмів скорочення URL-адрес з акцентом на їхню продуктивність
і безпеку. Скорочення URL-адрес є важливим інструментом для створення стислих версій довгих URL-адрес,
особливо на платформах з обмеженнями на кількість символів. Однак, зростаюча поширеність кіберзагроз
викликає занепокоєння щодо безпеки скорочення URL-адрес. у статті розглядається низка алгоритмів ско-
рочення URL-адрес, включаючи алгоритми на основі хешування та рандомізовані алгоритми, і порівнюється
їхня ефективність на основі таких факторів, як довжина URL-адреси, випадковість та стійкість до атак грубої
сили. Крім того, в статті досліджуються ризики для безпеки, пов'язані зі скороченням URL-адрес, і пропону-
ються стратегії для їх зменшення. Стаття також містить аналіз продуктивності різних алгоритмів скорочення
URL-адрес, враховуючи час, необхідний для генерації скороченої URL-адреси і перенаправлення користувача
на оригінальну URL-адресу. нарешті, в статті обговорюються проблеми оцінки алгоритмів скорочення URL-
адрес і окреслюються потенційні шляхи для майбутніх досліджень у цій галузі.

АЛГОрИТМИ СКОрОЧеннЯ URL, ОЦІнКА ПрОДуКТИВнОСТІ, МІрКуВАннЯ БеЗПеКИ,ХеШ-
АЛГОрИТМИ, ОЦІнКА ПрОДуКТИВнОСТІ, рАнДОМІЗОВАнІ АЛГОрИТМИ

Біоніка інтелекту. 2022. № 1 (98). С. 98–105 хнуре

Introduction

 URL shortening is a process of converting a long URL
to a shorter one, which redirects to the original URL.
The shortened URL is used to share links, save charac-
ters in social media posts, or make it easier for users to
remember a URL. URL shortening services have become
popular due to their convenience, but they also have some
disadvantages, such as security concerns and performance
issues. In this article, we will review and compare various
URL shortening algorithms based on their performance
and security.

In today's digital age, URLs have become an essen-
tial component of our daily lives. They are used to access
various resources on the internet, ranging from websites
to applications. However, the length of URLs can some-
times be a hindrance, especially when it comes to shar-
ing them on platforms that have character limits, such as
Twitter. This is where URL shortening comes into play.
URL shortening is the process of taking a long URL and

creating a shorter, more manageable version that redirects
to the original URL. This process has become increas-
ingly popular over the years, with numerous URL short-
ening services available on the internet. However, with the
rise of cyber threats, the security of URL shortening has
become a major concern. To address this issue, research-
ers have developed various URL shortening algorithms
that prioritize both performance and security. These al-
gorithms aim to create short URLs that are resistant to
cyber-attacks while ensuring fast and efficient redirection
to the original URL

This is an overview and comparison of various URL
shortening algorithms based on their performance. The
paper presents a detailed analysis of the most commonly
used URL shortening algorithms, including Hash-based,
Bijective, and Randomized algorithms, among others. The
analysis considers various factors, such as the length of the
generated URLs, the randomness of the generated strings,
and the resistance to brute-force attacks. Furthermore,

99

COMPARATIVE ANALySIS OF URL SHORTENING ALGORITHMS: PERFORMANCE CONSIDERATIONS IN THE APPLICATION DOMAIN…

the paper discusses the security risks associated with URL
shortening and the measures that can be taken to mitigate
them. It also highlights the importance of using HTTPS
[1] protocol for securing the redirection process.

Overall, this paper aims to provide a comprehensive
overview of URL shortening algorithms and their as-
sociated security risks. It is intended for researchers and
practitioners interested in improving the performance and
security of URL shortening algorithms.

 URL shortening is a process of converting a long URL
to a shorter one, which redirects to the original URL.
The shortened URL is used to share links, save charac-
ters in social media posts, or make it easier for users to
remember a URL. URL shortening services have become
popular due to their convenience, but they also have some
disadvantages, such as security concerns and performance
issues. In this article, we will review and compare various
URL shortening algorithms based on their performance
and security.

In addition to providing an overview and comparison
of URL shortening algorithms, this paper also explores the
various use cases of URL shortening, such as social me-
dia sharing, email marketing campaigns, and tracking user
behavior. URL shortening is often used in social media
sharing, where the character limit is restricted. Shortened
URLs allow users to share links to websites or content
that they find interesting or relevant without taking up too
much space. In email marketing campaigns, shortened
URLs are used to track clicks and user engagement. The
ability to track user behavior provides valuable insights
into the effectiveness of the campaign. However, despite
the numerous benefits of URL shortening, it comes with
its fair share of security risks. Attackers can use short-
ened URLs to launch phishing attacks, spread malware,
and perform other malicious activities. Therefore, it is
important to consider the security implications of URL
shortening algorithms when developing and using them.
Finally, the paper discusses the challenges associated with
evaluating URL shortening algorithms and the future re-
search directions in this field. It highlights the need for
further research to improve the security and performance
of URL shortening algorithms while considering the
evolving threat landscape.

In summary, this paper provides a comprehensive over-
view of URL shortening algorithms [2], such as Base62
[3], their associated security risks, SEO [4] optimization
and their performance comparison. It is a valuable re-
source for researchers, developers, and practitioners in-
terested in improving the efficiency and security of URL
shortening algorithms.

1. Problematic of URL shortening algorithms
and main goals of shortening

URL shortening is a technique that has become in-
creasingly popular in recent years, as it allows users to share
long, complicated URLs in a compact and easy-to-read

format. However, the practice of URL shortening also
raises a number of concerns and challenges, which need
to be addressed in order to ensure that users are able to
use shortened URLs in a safe and effective manner.

URL shortening algorithms are used to convert lengthy
URLs into shorter ones. This is done to make it easier to
share links on social media platforms and other places
where character limits are imposed. While URL shorten-
ing algorithms have become quite popular, they also come
with several problems that need to be addressed.

Security concerns: One of the most significant prob-
lems with URL shortening algorithms is the security risks
they pose. Because the original URL is obscured by the
shortened URL, users may be redirected to malicious or
harmful websites without their knowledge. Cybercriminals
can use shortened URLs to disguise phishing scams,
malware downloads, and other types of online threats.
Additionally, shortened URLs can be vulnerable to hack-
ing and tampering, which can compromise user data and
privacy.

Link rot: Another problem associated with URL short-
ening algorithms is link rot, which occurs when the origi-
nal URL is no longer valid or has been changed. Because
shortened URLs rely on the original URL to redirect us-
ers to the correct destination, link rot can lead to broken
links and frustration for users. While some URL shorten-
ing services provide automatic link checking and updat-
ing, this is not always the case.

Over-reliance on third-party services: Many URL
shortening services are provided by third-party compa-
nies, which means that users may have limited control
over the service and how it is used. If the service provider
goes out of business or changes their policies, this can lead
to disruptions in service and broken links. Additionally,
third-party URL shortening services may collect user data
or display ads, which can be a privacy concern for some
users.

Duplication of URLs: Because URL shortening algo-
rithms use a fixed-length code to generate the shortened
URL, there is a risk of duplication. If two different URLs
generate the same shortened code, this can lead to con-
flicts and broken links. While some URL shortening ser-
vices use randomization or other techniques to minimize
the risk of duplication, this is not always foolproof.

Dependence on service availability: Finally, URL
shortening algorithms are dependent on the availability of
the service provider. If the service experiences downtime
or other disruptions, users may be unable to access the
shortened URLs. Additionally, because URL shortening
services are often free or low-cost, there is a risk of service
providers going out of business or changing their policies
without warning.

By the way, URL shortening comes with several secu-
rity risks, such as phishing attacks, malware distribution,
and the potential exposure of sensitive information. These

100

Kyrychenko I., Shamrai ye.

risks occur because the shortened URL may obscure the
actual destination of the link, and users may not be aware
of the actual website they are accessing.

Phishing attacks are a common security risk associated
with URL [5] shortening. Attackers may use shortened
URLs to redirect users to fake websites that look identi-
cal to legitimate ones, tricking users into giving away their
sensitive information.

Malware distribution is another significant risk associ-
ated with URL shortening. Attackers can use shortened
URLs to distribute malware, which can infect the user's
device when they click on the link.

To mitigate these risks, several measures can be taken,
such as:

1. HTTPS: Use HTTPS for all URLs, including
shortened URLs, to ensure that all communica-
tions between the user's browser and the website are
encrypted and secure.

2. URL scanners: Use URL scanners that can detect
phishing [6] URLs and malware distribution URLs.
These scanners can identify and block URLs that
are known to be malicious.

3. User education: Educate users about the potential
risks associated with shortened URLs and how to
verify the destination of the link before clicking on
it.

4. URL expiration: Implement URL expiration poli-
cies, which can prevent attackers from using short-
ened URLs for an extended period.

5. Randomized URLs: Use randomized URLs instead
of sequential ones. This can make it harder for at-
tackers to guess the destination of the URL.

By taking these measures, the risks associated with
URL shortening can be mitigated, and the security of
shortened URLs can be improved.

Overall, URL shortening is a useful tool for sharing
links on the internet, but it is not without its challenges
and limitations. In order to use URL shortening effec-
tively, users need to be aware of the potential problems as-
sociated with this practice and take steps to address them,
such as monitoring and updating their links regularly, us-
ing trusted URL shortening services, and being cautious
when clicking on shortened links. By taking these steps,
users can minimize the risks associated with URL short-
ening and enjoy the benefits of this powerful tool for shar-
ing and communicating information online.

2. URL Shortening Algorithms

URL shortening algorithms are used to create shorter
and more manageable versions of lengthy URLs. These
algorithms take a long URL as input and generate a short-
er URL that redirects to the original URL when clicked.
URL shortening algorithms are widely used in various ap-
plications, including social media, email marketing, and
other online platforms that have character limits. One of

the main advantages of using URL shortening algorithms
is that they can help save space and improve readability,
particularly in social media platforms where character
limits are strict. Shorter URLs also make it easier for users
to remember and share links and can improve the overall
user experience. Another advantage of URL shortening
algorithms is that they can provide analytics and tracking
capabilities, allowing users to track clicks and monitor the
performance of their links. This can be particularly useful
for marketing campaigns and other online promotions, as
it allows users to track the effectiveness of their efforts and
make informed decisions about future campaigns.

3. Hashing Algorithms

Hashing algorithm [7] converts a URL to a fixed-size
hash value, which is then used as a short URL. The hash
value is unique to each URL, and the algorithm ensures
that it produces the same hash value for the same URL.
Hashing algorithms are fast and efficient, but they are vul-
nerable to collisions. A collision occurs when two differ-
ent URLs produce the same hash value, which can result
in a security breach or incorrect redirection.

Hashing algorithms are a popular method used in
URL shortening services to generate shortened URLs.
Hashing is a mathematical function that takes an input
value, such as a URL, and produces a fixed-length output
value, known as a hash. Hashing is a one-way function,
meaning that it is impossible to reverse the process and
obtain the original input value from the hash.

When generating shortened URLs, the hashing algo-
rithm takes the original URL and computes a hash value
based on the contents of the URL. The hash value is then
mapped to a shorter, more compact URL that redirects to
the original URL when clicked. Because the hash value
is unique to the original URL, it ensures that each short-
ened URL is unique and can be used to redirect users to
the correct destination.

There are several popular hashing algorithms used in
URL shortening services, including MD5, SHA-1, and
SHA-256. MD5 is a widely used hashing algorithm that
produces a 128-bit hash value, while SHA-256 [8]and
SHA-1 are more secure hashing algorithms [9] that pro-
duce 160-bit and 256-bit hash values, respectively. The
longer the hash value, the more secure the algorithm is, as
it becomes more difficult for attackers to guess the origi-
nal input value.

There are several advantages to using hashing algo-
rithms in URL shortening:

1. Efficiency: Hashing algorithms are computationally
efficient and can generate hashes quickly and eas-
ily. This makes them ideal for use in high-volume
applications, such as social media and online ad-
vertising.

2. Uniqueness: Hashing algorithms produce unique
hash values for each input value, which ensures

101

that each shortened URL is unique and can be
used to redirect users to the correct destination.

3. Security: Hashing algorithms are secure [10], as
they are one-way functions that make it difficult
for attackers to reverse-engineer the original input
value from the hash.

Fig. 1. Block of diagram for MD5 and SHA-1 processors

Random number generation and dictionary-based en-
coding are popular techniques used in combination with
hashing algorithms for URL shortening. Random number
generation involves generating a random number or string
of characters and using it as a suffix or prefix to the origi-
nal URL. This can help create unique and shorter URLs,
as the length of the original URL no longer determines
the length of the shortened URL. However, generating
truly random numbers can be challenging, and collisions
may still occur if the random numbers are not generated
properly. Dictionary-based encoding, on the other hand,
involves mapping the original URL to a compressed or
encoded version using a predefined set of characters or
symbols. This can result in shorter URLs compared to
hash-based methods, and collisions are less likely as the
encoding scheme is designed to avoid duplicate mappings.
However, dictionary-based encoding can also be vulner-
able to attacks, such as dictionary attacks or reverse look-
ups, which can compromise the security of the shortened
URLs.

While hashing algorithms are a popular method for
generating shortened URLs, they are not without their
limitations. One limitation is that the length of the short-
ened URL is determined by the length of the hash value,
which can be longer than other URL shortening methods.
Additionally, hash-based URL shortening is vulnerable
to collisions, where two different input values produce
the same hash value, which can lead to duplicate URLs
and other issues. To address these limitations, some URL

shortening services use a combination of hashing and
other techniques, such as random number generation or
dictionary-based encoding, to create more secure and ef-
ficient shortened URLs.

4. Bijective algorithms

Bijective algorithms are commonly used for URL
shortening because they are easy to implement, fast, and
can create shorter URLs than other types of algorithms.
A bijective function is a function that has a one-to-one
correspondence between its domain and range, meaning
that each input has a unique output, and each output has
a unique input. This makes it ideal for generating unique,
shortened URLs for long and unwieldy URLs. Functions
can be injections (one-to-one functions), surjections
(onto functions) or bijections (both one-to-one and
onto). Informally, an injection has each output mapped
to by at most one input, a surjection includes the entire
possible range in the output, and a bijection has both con-
ditions be true.

One of the advantages of bijective algorithms is that
they do not require any additional storage space, as the
shortened URL can be generated on-the-fly. This makes
them particularly useful in situations where storage space
is limited, such as in mobile applications or on websites
with high traffic volumes.

Another advantage of bijective algorithms is that they
can be easily customized to suit specific needs. For ex-
ample, some applications may require shorter URLs than
others, or may need to generate URLs with specific pat-
terns or formats.

Fig. 2. Bijection between two sets

However, bijective algorithms do have some limita-
tions. One of the main limitations is that the length of the
shortened URL is directly proportional to the size of the
domain space, which means that the shorter the URL, the
smaller the domain space. This can make the algorithm
more susceptible to collisions, where two or more URLs
map to the same shortened URL. To mitigate this risk,
many bijective algorithms use a combination of random
numbers and hashes to generate unique, shorter URLs.
This can increase the size of the domain space and reduce
the likelihood of collisions.

COMPARATIVE ANALySIS OF URL SHORTENING ALGORITHMS: PERFORMANCE CONSIDERATIONS IN THE APPLICATION DOMAIN…

102

5. Randomized algorithms

Randomized algorithms are algorithms that incorpo-
rate some element of randomness or probability into their
operation. Instead of producing a deterministic output for
a given input, randomized algorithms make use of a ran-
dom number generator to generate some component of
their output. This randomization can be used to improve
the efficiency or accuracy of the algorithm, or to add an
element of unpredictability or randomness to its behavior.
One common application of randomized algorithms is in
cryptography and computer security. For example, one of
the most widely used cryptographic protocols, the RSA
algorithm, relies heavily on random number generation
to generate the keys used for encryption and decryption.
Similarly, many secure communication protocols, such as
SSL/TLS, incorporate randomization in order to prevent
eavesdropping or interception of data.

There are several advantages to using randomized al-
gorithms in security applications:

1. Randomness can make attacks more difficult: By
incorporating randomization into the algorithm,
it can be more difficult for an attacker to predict
or analyze the behavior of the algorithm. This can
make it more difficult for an attacker to find weak-
nesses or vulnerabilities that can be exploited.

2. Improved efficiency: Randomized algorithms can
be faster or more efficient than deterministic algo-
rithms, particularly for problems that are difficult
to solve using traditional methods. This can be par-
ticularly useful for large-scale or computationally
intensive security applications.

3. Unpredictability: Randomized algorithms can add
an element of unpredictability or randomness to
the behavior of a system. This can make it more
difficult for an attacker to predict the behavior of
the system, which can make it more difficult to
launch successful attacks.

By the way, there are also some potential disadvantages
to using randomized algorithms in security applications:

1. Potential for bias: If the random number generator
used in the algorithm is biased or predictable, it
can be exploited by an attacker to gain an advan-
tage or to break the security of the system.

2. Difficulty of analysis: Randomized algorithms can
be more difficult to analyze and prove correct than
deterministic algorithms, particularly for complex
systems. This can make it more difficult to identify
or fix vulnerabilities in the system.

3. Complexity: Randomized algorithms can be more
complex to implement and maintain than deter-
ministic algorithms. This can make them more
difficult to deploy or update, particularly in large-
scale or distributed systems.

Randomized algorithms can be used for URL shorten-
ing by generating a random sequence of characters that

represent the shortened URL. Here are some examples of
randomized algorithms that can be used for URL shorten-
ing.

A simple approach is to generate a random string of
characters to represent the shortened URL. This can
be accomplished using a random number generator and
a mapping of characters to their corresponding ASCII
codes. The resulting string can then be appended to a
base URL to create the shortened URL. Bloom filters are
commonly used in URL shortening to check if a URL has
already been shortened or not. A Bloom filter is a proba-
bilistic data structure that uses multiple hash functions to
map a URL to a set of bits in a bit array. When a new URL
needs to be shortened, its presence in the Bloom filter is
checked by computing the hash values using the same
hash functions used to insert the URLs into the filter. If all
the corresponding bits in the Bloom filter are set to 1, the
URL is considered to be already shortened. If the URL
is not already shortened, a randomized algorithm can be
used to generate a unique short code for the URL. Bloom
filters are widely used in URL shortening services because
they are efficient in terms of memory and computation
and can provide a high probability of detecting whether a
URL has already been shortened. However, Bloom filters
have a trade-off between memory usage and false positive
rate. If the Bloom filter is too small or uses too few hash
functions, the false positive rate can become unacceptably
high, resulting in URLs being incorrectly flagged as al-
ready shortened. On the other hand, if the Bloom filter
is too large or uses too many hash functions, the memory
usage and computation time can become prohibitively
high. Therefore, it is important to choose appropriate pa-
rameters for the Bloom filter based on the expected num-
ber of URLs and the desired false positive rate.

6. Comparison of URL shortening algorithms

We are going to cover experimental results of compari-
son of some type algorithms which can be used for URL
shortening. As evaluation and comparison parameters for
the algorithms, we will consider their performance and
reliability. We will take one representative algorithm from
each method of shortening URLs and conduct a detailed
analysis, describing the essence of the algorithm and its
implementation, testing its performance on different da-
tasets, and comparing each of them. Many of those algo-
rithms are used generally in neural networks and Face
detection algorithms.

Let’s take a look at SHA-2, Base62 and Bloom Filter
algorithms for URL shortening.

6.1. SHA1

SHA-2 is a family of cryptographic hash functions that
were designed by the National Security Agency (NSA)
and published by the National Institute of Standards and
Technology (NIST) in 2001. The SHA-2 family includes
six different hash functions, each with a different output

Kyrychenko I., Shamrai ye.

103

size: SHA-224, SHA-256, SHA-384, SHA-512, SHA-
512/224, and SHA-512/256. SHA-2 was created as a
successor to SHA-1, which had been found to have vul-
nerabilities that made it insecure. The design of SHA-2
was based on the principles of the Merkle–Damgård con-
struction, which is a popular method for building crypto-
graphic hash functions. The SHA-2 family of hash func-
tions has been widely used in a variety of applications,
including digital signatures, password storage, and data
integrity verification. It has also been used in conjunction
with other cryptographic algorithms, such as RSA and
AES, to provide secure communication over the internet.

The hash function is initialized with a set of constants
that depend on the specific variant of SHA-2 being used.
These constants are known as the initial hash values or
initial states, and they are typically fixed for a given vari-
ant of the algorithm. For example, the initial hash values
for SHA-256 are the first 32 bits of the fractional parts
of the square roots of the first eight prime numbers. The
input message is padded so that its length is a multiple of
512 bits. The padding is designed to ensure that the mes-
sage is of a fixed length and to provide additional security
against attacks. The padding is done in two steps:

1. Append a single '1' bit to the end of the message.
2. Append '0' bits until the length of the message is

congruent to 448 modulo 512. This means that
the message length will be a multiple of 512 after
the padding, but there will be exactly 64 bits left to
store the length of the original message.

The padded message is divided into 512-bit blocks,
which are then processed by the hash function. Each block
is processed in turn using a set of logical operations that
depend on the specific variant of SHA-2 being used. The
processing of each block consists of the following steps:

1. The 512-bit block is divided into 16 words of 32
bits each. These words are used to create a message
schedule of 64 words, using a specific algorithm
that depends on the specific variant of SHA-2 be-
ing used.

2. Initialize working variables: The working variables
for the hash function are initialized using the initial
hash values for the specific variant of SHA-2 being
used.

3. Main loop: The message schedule and working vari-
ables are used in a series of logical operations to
process the block. This loop is repeated 64 times
for each block of data.

4. Update working variables: The working variables are
updated based on the results of the main loop.

Once all of the blocks have been processed, the output
of the hash function is generated. The output size depends
on the specific variant of SHA-2 being used. For example,
the output size for SHA-256 is 256 bits. The output is gen-
erated by concatenating the final hash values for each block,
which are typically represented as a set of 32-bit words.

6.2 Base62

Method for encoding data in a format that uses a set of
62 alphanumeric characters, consisting of both uppercase
and lowercase letters and digits. This algorithm is com-
monly used for shortening URLs and generating unique
identifiers.

The Base62 algorithm uses a character set of 62 char-
acters, consisting of 26 uppercase letters, 26 lowercase
letters, and 10 digits. These characters are usually rep-
resented as a string of characters in the order in which
they appear in the character set, such as "0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm
nopqrstuvwxyz".

Before encoding the data using the Base62 algorithm,
it must first be converted to a base-10 number. This is
typically done using an existing encoding method, such
as UTF-8 or ASCII. Once the data has been converted to
base-10, it can be converted to base-62 using the follow-
ing steps. Divide the base-10 number by 62, and record
the remainder.Continue dividing the quotient by 62 and
recording the remainders until the quotient is zero.

The resulting sequence of remainders represents the
encoded data in base-62.

Each remainder in the sequence represents a numeric
value that corresponds to a character in the Base62 char-
acter set. To encode the data, each remainder is mapped
to its corresponding character in the character set.

The resulting sequence of characters represents the
encoded data in the Base62 format. This encoded data
can be used as a shortened URL or a unique identifier.
The Base62 algorithm involves converting data to a base-
10 number, dividing the base-10 number by 62 to obtain
a sequence of remainders, mapping the remainders to
characters in a character set, and outputting the resulting
sequence of characters as the encoded data.

6.3 Bloom filter

The Bloom filter is a space-efficient probabilistic data
structure that is useful for answering set membership que-
ries. It was invented by Burton Howard Bloom in 1970.
The main idea behind the Bloom filter is to use a bit array
and a set of hash functions to determine whether an ele-
ment is likely to be a member of a set or not. The filter has
a fixed size, and elements are added to it by hashing them
multiple times and setting the corresponding bits in the
array. To query for membership, the same hash functions
are applied to the element, and the corresponding bits in
the array are checked. If all of the bits are set to 1, then
the element is likely to be in the set. If any of the bits are
set to 0, then the element is definitely not in the set.

The Bloom filter algorithm requires the definition
of two parameters: the size of the filter and the number
of hash functions. The filter size, denoted by m, is the
number of bits in the filter, and the number of hash func-
tions, denoted by k, determines the number of times the

COMPARATIVE ANALySIS OF URL SHORTENING ALGORITHMS: PERFORMANCE CONSIDERATIONS IN THE APPLICATION DOMAIN…

104

input data will be hashed. The Bloom filter is initialized
as a bit array of size m with all bits set to 0. The bit ar-
ray is typically represented as an array of Boolean values.
Alternatively, a bit vector or a bitmap can be used to rep-
resent the filter. To add an element to the Bloom filter,
the element is hashed k times using k independent hash
functions. Each hash function produces a hash value that
is used to set the corresponding bits in the filter to 1. The
specific bits to be set are determined by taking the modulo
of the hash value with the size of the filter. In other words,
the k hash functions produce k indices, and the corre-
sponding bits in the filter are set to 1. To query whether an
element is likely to be a member of the set, the element is
hashed k times using the same hash functions used to add
elements to the filter. The corresponding bits in the filter
are checked, and if all of them are set to 1, the element is
likely to be a member of the set. If any of the correspond-
ing bits are 0, the element is definitely not a member of
the set. One drawback of the Bloom filter algorithm is
that it can produce false positives. This occurs when an
element is not a member of the set but the corresponding
bits in the filter are set to 1 due to collisions with other
elements. The probability of a false positive depends on
the size of the filter, the number of hash functions, and
the number of elements in the set. To reduce the probabil-
ity of false positives, the size of the filter and the number
of hash functions must be carefully chosen based on the
expected number of elements in the set. The Bloom filter
algorithm is used in a variety of applications, such as web
caching, network routers, distributed systems, and spell
checkers. It is also used in DNA sequencing to filter out
reads that do not match a reference genome. The Bloom
filter is a simple and efficient data structure that can save
memory and improve performance in many applications.

Table 1
Speed comparison of methods for different length of data

Technology 1 000 10 000 100 000

SHA-2 5 ms 8 ms 11 ms

Base62 2 ms 4 ms 5 ms

Bloom filter 3 ms 5 ms 9 ms

Base62 is an encoding scheme that converts bina-
ry data to a string using a character set of 62 characters
(usually the 26 lowercase and 26 uppercase letters of the
English alphabet, plus the 10 decimal digits). The result-
ing string is shorter than the original binary data, making
it useful for shortening URLs or generating unique identi-
fiers. Base62 encoding and decoding are simple operations
that involve basic arithmetic and string manipulation, so
they are very fast and have low computational overhead.
Encoding and decoding a string using Base62 can be done
in a few microseconds on modern CPUs.

SHA-2, on the other hand, is a family of cryptograph-
ic hash functions that generate a fixed-size digest of a

given input data. SHA-2 is widely used for data integrity
checking and digital signature verification, as well as pass-
word hashing and other security applications. SHA-2 is a
computationally intensive operation that involves multiple
rounds of bitwise operations and nonlinear functions, so
it has higher computational overhead than Base62 encod-
ing. The actual performance of SHA-2 depends on the
size of the input data, the number of rounds used, and
the hardware and software used to perform the compu-
tation. In general, SHA-2 can process data at a rate of
several megabytes per second on modern CPUs and can
take several milliseconds or more to compute a digest for
a large input.

Bloom filters have a low memory overhead and can
represent very large sets with a small amount of memory,
but their accuracy depends on the size of the filter and the
number of hash functions used. In terms of string short-
ening performance, Base62 is likely the fastest option,
followed by Bloom filters and then SHA-256.For Base62
is a commonly used encoding scheme for shortening
URLs, but it may not be optimal for hashing algorithms.
Consider using a longer encoding scheme, such as Base64
or Base58, which provides more entropy and reduces the
risk of collisions. Key stretching is a technique that makes
brute-force attacks [11] more difficult by slowing down
the hashing process. It involves iterative hashing the input
with a salt and a fixed number of rounds, which can be
adjusted to increase the computational cost of generat-
ing the hash. Ensure that the input to the hash function is
properly validated to prevent attacks such as buffer over-
flows or injection attacks. Hash-based message authenti-
cation code (HMAC) can be used to add an additional
layer of security to the hash function by incorporating a
secret key into the calculation. This can prevent attacks
such as message tampering or length extension attacks.

The choice of URL shortening algorithm depends
on the specific requirements of the application domain.
For applications that require speed and compactness, the
Base62 encoding algorithm is a good choice. For appli-
cations that require security and uniqueness, the SHA-2
hashing algorithm is more suitable. Finally, the Bloom fil-
ter algorithm is a good choice for applications that require
speed and scalability, but with lower accuracy require-
ments.

Conclusions

In conclusion, URL shortening algorithms play an
important role in the domain of web applications, where
shorter URLs can be beneficial for various reasons, such as
improving usability, reducing the risk of errors, and track-
ing user behavior. However, the choice of algorithm is not
trivial and requires careful consideration of the trade-offs
between performance, security, and other requirements.

We discussed the challenges associated with URL
shortening, including the need for uniqueness, collision

Kyrychenko I., Shamrai ye.

105

avoidance, and resilience to attacks. We also described the
main goals of URL shortening, such as producing short,
easy-to-read, and easy-to-share URLs that preserve the
original destination. We then presented three categories of
URL shortening algorithms, namely hashing algorithms
[12], bijective algorithms, and randomized algorithms,
and analyzed several specific examples, such as SHA-2,
Base62, and Bloom filter. We compared the performance
of these algorithms in terms of speed, memory usage, and
collision rate for different lengths of data. By the way, all
those algorithms can be used to solve other tasks in areas
such as Big Data [13], Artificial Intelligence [14] etc. Our
analysis revealed that each algorithm has its own strengths
and weaknesses and is suitable for different use cases. For
example, hashing algorithms are simple and fast but can
suffer from collisions, while bijective algorithms are col-
lision-free but may have limited scalability. Randomized
algorithms can provide good trade-offs between speed,
uniqueness, and security but require careful tuning.

Overall, our research showed that URL shortening al-
gorithms are a complex and challenging area of study that
requires a thorough understanding of the application do-
main and careful evaluation of the available options.

References

[1] Beckett D.; Sezer S.,et al. (2017). HTTP/2 Cannon: Experi-
mental analysis on HTTP/1 and HTTP/2 request flood DDoS
attacks, IEEE Xplore. doi: 10.1109/ICME.2007.4284716

[2] Yuan, H.; Wun, B.; Crowley, P.; Beckett, et al. (2010). Soft-
ware-based implementations of updateable data structures for
high-speed URL matching. IEEE Xplore.

[3] Wen, S.; Dang, W.; Beckett, D.; Sezer, S.; et al. (2018).
Research on Base64 Encoding Algorithm and PHP Imple-
mentation. IEEE Xplore. doi: 10.1109/GEOINFORMAT-
ICS.2018.8557068.

[4] Arias Aristizábal, L. F., & Duque Méndez, N. D. (2012). SEO
(Search Engine Optimization) schema application for websites
with an emphasis on optimizing pages developed in flash. doi:
10.1109/ColombianCC.2012.6398011.

[5] Soon L.-K., & Lee S. H. (2008). Identifying Equivalent
URLs Using URL Signatures, IEEE Xplore.doi: 10.1109/
SITIS.2008.21.

[6] Chen Y., Zhou Y., Dong Q., & Li Q. (2020). A Malicious
URL Detection Method Based on CNN. IEEE Xplore. doi:
10.1109/TOCS50858.2020.9339761

[7] Yan, K., Chen, J., Cao, B., Zheng, Y., & Hong, T. (2014).
Research on a low conflict flow matching hash algorithm.
IEEE Xplore. doi: 10.1049/cp.2013.2017.

[8] Pham H. L., Tran T. H., Le V. T. D., Nakashima Y., & Yan
K. (2022). A Coarse Grained Reconfigurable Architecture
for SHA-2 Acceleration: An Improved Low Conflict Flow
Matching Hash Algorithm. IEEE Xplore. doi: 10.1109/IP-
DPSW55747.2022.00117

[9] Kanca A. M., SAĞIROĞLU Ş. (2021). Sharing Cyber Threat
Intelligence and Collaboration: An Improved Low Conflict
Flow Matching Hash Algorithm. IEEE Xplore. doi: 10.1049/
cp.2021.965432

[10] Laatansa, R., Saputra, R., Noranita, B., Yan, K., Chen, J., Cao,
B., Zheng, Y., & Hong, T. (2020). Analysis of GPGPU-Based
Brute-Force and Dictionary Attack on SHA-1 Password Hash:
An Improved Low Conflict Flow Matching Hash Algorithm.
IEEE Xplore. doi: 10.1049/cp.2020.8982390

[11] Salamatian S., Huleihel W., Beirami A., Cohen, A., Médard M.
(2020). Centralized vs Decentralized Targeted Brute-Force
Attacks: Guessing With Side-Information using an improved
low conflict flow matching hash algorithm. IEEE Xplore. doi:
10.1109/TIFS.2020.2998949.

[12] Studiawan, H., Pratomo, B. A., Anggoro, R., Yan, K., Chen,
J., Cao, B., Zheng, Y., & Hong, T. (2017). Clustering of SSH
brute-force attack logs using k-clique percolation and an
improved low conflict flow matching hash algorithm. IEEE
Xplore. doi: 10.1109/ICTS.2016.7910269.

[13] K. Smelyakov, A. Chupryna, O. Bohomolov and I. Ruban, "The
Neural Network Technologies Effectiveness for Face Detec-
tion," 2020 IEEE Third International Conference on Data
Stream Mining & Processing (DSMP), 2020, pp. 201-205,
doi: 10.1109/DSMP47368.2020.9204049.

[14] K. Smelyakov, A. Chupryna, O. Bohomolov and N. Hunko, "The
Neural Network Models Effectiveness for Face Detection and
Face Recognition," 2021 IEEE Open Conference of Electri-
cal, Electronic and Information Sciences (eStream), 2021,
pp. 1-7, doi: 10.1109/eStream53087.2021.9431476.

The article was delivered to editorial stuff on the 20.12.2022

COMPARATIVE ANALySIS OF URL SHORTENING ALGORITHMS: PERFORMANCE CONSIDERATIONS IN THE APPLICATION DOMAIN…

