
64

УДК 004.4: 004.4	 DOi 10.30837/ bi.2022.1(98).08

Ilona Revenchuk1, Vladyslav Steshko2

1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,
ilona.revenchuk@nure.ua, ORCID: 0000-0002-5188-9538

2 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,
vladyslav.steshko@nure.ua

ARCHITECTURAL SOLUTIONS AND OPTIMIZATION METHODS TO IMPROVE
THE PERFORMANCE OF NODE.JS AND VUE.JS APPLICATIONS

Software architecture includes a number of important decisions about the organization of a software system, in-
cluding the choice of structural elements and their interfaces that make up and unite the system into a single whole;
the behavior provided by the joint work of these elements; the organization of these structural and behavioral elements
into larger subsystems, as well as the architectural style that this organization adheres to. The performance of a web ap-
plication is an objective measurement and user experience associated with the loading and operation of the program.
Performance is about how long a web application takes to load, becomes interactive and responsive, and how smoothly
the interaction with content takes place. The architecture and the steps that need to be taken to optimize the program
have always been and will be relevant. Any application has its own architecture, but not every application adheres to the
rules for building a good architecture, the same applies to optimization. A program with a good architecture is easier to
extend and change, as well as to test, configure and understand. As practice shows, people do not like to wait, and even
a three-second delay can force a user to close a tab with a slow resource. Therefore, using a number of optimization
methods to improve performance will lead to increased usability and will not force the user to leave the resource due to
the fact that it is running slowly. Search engines also pay attention to hundreds of parameters when ranking pages in the
search. And one of the most important is the speed of data transfer from the server to the client.

ARCHITECTURE, OPTIMIZATION METHODS, PERFORMANCE, WEB SYSTEM, NODE JS, VUE

І.А. Ревенчук, В.Ю. Стешко. Архітектурні рішення і методи оптимізації для підвищення продуктивності до-
датків на Node.js та Vue.js. Архітектура програмного забезпечення містить у собі низку важливих рішень про
організацію програмної системи, серед яких, вибір структурних елементів та їх інтерфейсів, що становлять
і об›єднують систему в єдине ціле; поведінка, що забезпечується спільною роботою цих елементів; організацію
цих структурних та поведінкових елементів у більші підсистеми, а також архітектурний стиль, якого дотримуєть-
ся ця організація. Продуктивність веб-додатку – це об›єктивні вимірювання та відчуття користувача, пов›язані
із завантаженням і роботою програми. Продуктивність – це про те, як довго веб-додаток завантажується, стає
інтерактивним та чуйним, про те, як плавно відбувається взаємодія з контентом. Архітектура та кроки, які
необхідно зробити для оптимізації додатку, завжди були і будуть актуальними. Будь-який додаток, має свою
архітектуру, але далеко не кожен додаток, дотримується правил, щодо побудови гарної архітектури, те саме
стосується і оптимізації. Програму з гарною архітектурою легше розширювати та змінювати, а також тестувати,
налагоджувати та розуміти. Як показує практика, люди не люблять чекати і навіть трьох секундна затримка
може змусити користувача закрити вкладку з повільним ресурсом. Тому застосування низки методів оптимізації
для підвищення продуктивності, призведе до підвищення зручності використання і не змусить користувача
залишити ресурс через те, що він повільний. Також пошукові системи при ранжируванні сторінок у пошуку
звертають увагу на сотні параметрів. І один із найважливіших – швидкість передачі даних від сервера клієнту.

АРХІТЕКТУРА, МЕТОДИ ОПТИМІЗАЦІЇ, ПРОДУКТИВНІСТЬ, ВЕБ-СИСТЕМА, NODE JS, VUE.

Introduction

At the current stage of World-wide-web development,
it is important to improve the performance of a web ap-
plication, scalability and reliability, by building a correct
architecture and using optimization methods.

Technology selection: Node.js and Vue.js, for research,
is determined by personal preferences. These technologies
are also quite popular, both among companies and devel-
opers.

Behind any good product, there is a high-quality ar-
chitecture and the work done is related to its optimiza-
tion. Each application may, if not immediately, then af-
ter some time, encounter performance-related problems.
These problems occur in the following situations:

–	 the app grows and becomes larger (hundreds of
custom scripts, dozens of screens, etc.);

–	 the application begins to operate with a large
amount of data;

–	 a large number of users appear.
All this can lead to a loss of performance, especially if

the application is not optimized and, as a result, users will
prefer to use a competitor’s product. The use of a poor-
quality application architecture negatively affects its fur-
ther scaling and, as a result, the loss of understanding of
the relationship between system components. Maintaining
such an application becomes very difficult. Therefore, de-
signing an architecture and paying attention to optimiza-
tion is the key to a good product.

Біоніка інтелекту. 2022. № 1 (98). С. 64–69	 хнуре

65

1.	Basic theoretical information
about architectural solutions

Software architecture is a set of approaches for or-
ganizing a software and hardware complex. Description
of system components and relationships between them.
Architecture includes approaches, constraints, rules, and
heuristics to follow when writing code [1].

Good architecture helps to design and develop a sys-
tem so that it is easier and more convenient to extend and
change it. Therefore:

–	 if communication between modules is regulated,
it is easier to replace their implementation with another
one;

–	 if communication with the outside world is regu-
lated, then there is less chance of data leakage;

–	 if the code is separated correctly, the application
is easier to test;

–	 if the code is clearly organized, it takes less time
to add new features and search for bugs in old ones;

–	 if the architecture is widely known, immersion in
the project is faster [1].

A web app architecture presents a layout with all the
software components (such as databases, applications and
middleware) and how they interact with each other.

Typically a web-based application architecture com-
prises 3 core components (3-tier):

–	 client-side (Presentation layer / Client Layer) – is
the key component that interacts with the user, receives
the input and manages the presentation logic while con-
trolling user interactions with the application. User inputs
are validated as well, if required.

–	 server-side (Application Layer / Business Logic
Layer) – handles the business logic and processes the user
requests by routing the requests to the right component
and managing the entire application operations. It can
run and oversee requests from a wide variety of clients.

–	 database server (Data Layer) provides the required
data for the application. It handles data-related tasks. In
a multi-tiered architecture, database servers can manage
business logic with the help of stored procedures.

It is possible to conditionally divide architectural solu-
tions according to their goals and scope.

Some approaches distribute responsibility between
modules. They determine which modules will be respon-
sible for what. These approaches are called architectural
patterns, namely: MVC, MVVM, MVP.

MVC (Model-View-Controller) — a scheme for di-
viding program data and control logic into three separate
components: model, view, and controller — so that each
component can be modified independently:

–	 the model provides data and responds to controller
commands by changing its state;

–	 the view is responsible for displaying user model
data, responding to model changes.

–	 the controller interprets user actions, notifying the
model of the need for changes.

The pattern is shown in fig. 1.

Fig. 1. MVC

MVVM (Model-View-ViewModel) — allows to sepa-
rate the application logic from the visual part (View). This
pattern is architectural, that is, it defines the overall ar-
chitecture of the application. MVVM consists of three
components: Model, ViewModel, and View. The pattern
is shown in fig. 2.

Fig. 2. MVVM

MVP (Model-View-Presenter) is a user interface
development pattern. The MVP pattern is derived from
MVC, but has a slightly different approach. The main
difference is that presenter is not closely related to the
model. The presenter takes the place of the controller.
The MVP pattern is shown in fig. 3.

Fig. 3. MVP

The presenter takes over all the logic of data process-
ing, updating the view, and processing user commands.
The view in this case is passive: it does nothing but display
data as the presenter tells it to. If in MVC the view could
take over the formatting of the output, then in MVP the
presenter is also responsible for this.

ARCHITECTURAL SOLUTIONS AND OPTIMIZATION METHODS TO IMPROVE THE PERFORMANCE OF NODE.JS AND VUE.JS APPLICATIONS

66

Others determine how close each of the modules is
to business logic. For such approaches, it is important
which part of the code directly deals with the application
task, and which part deals with infrastructure tasks. For
example, in a photo processing application, the business
logic would be filter functions, and the infrastructure tasks
would be calls to the phone’s camera API [2].

Still others manage data flows in the app. They define
how modules communicate with each other: directly, in-
directly, or using special services such as the event bus. In
general, data flows can be organized in a huge number
of ways, but most often in practice there are two types in
frontend: unidirectional and bidirectional. In a unidirec-
tional data stream, each part of the application can re-
ceive or transmit data from another part. The direction of
such flow does not change. Data in a bidirectional stream
can be transmitted between parts of the application in
both directions. This is most often used to link the model
and view, so that updating, for example, text in the in-
put field immediately updates data in the model — this is
called bidirectional data binding. Frameworks that use bi-
directional binding are often reactive — that is, they apply
changes instantly not only to the UI, but also to the data
being computed. Vue is one such framework.

The following approaches determine the layout of the
application. It will be one large program (monolith) or a
set of several smaller programs (microservices). In gen-
eral, there are three types of web application architecture:
monolith, microservices and serverless.

A monolith is an architectural solution in which all
components and modules are closely related and depend
on each other [3]. An example of the monolith architec-
ture is shown in fig. 4.

Fig. 4. Monolithic architecture

Monolithic applications work fairly efficiently, as long
as they don’t get too big and cause scaling problems.

Microservices is an architectural solution based on the
distribution of modules into separate systems that com-
municate with each other using messages [3]. An example
of the architecture is shown in fig. 5.

Microservices architecture solves several challen
ges that are encountered in a monolithic environment.

In a microservice architecture, the code is developed
as loosely-coupled, independent services. Each micros-
ervice contains its own database and operates a specific
business logic which means you can develop and deploy
independent services with ease. Since it’s loosely coupled,
microservice architecture provides the flexibility to up-
date/modify and scale independent services. Development
becomes easy and efficient and continuous delivery is en-
abled. For highly scalable and complex applications, mi-
croservices is a good choice.

Fig. 5. Microservices architecture

Serverless is an architectural solution that focuses on
development, instead of deployment and interaction be-
tween services [3]. It is an alternative to microservices that
automates the entire deployment thanks to cloud technol-
ogies (fig. 6).

Fig. 6. Serverless architecture

Serverless computing lowers costs as resources are only
used when the application is in execution. The scaling
tasks are handled by the cloud provider. Moreover, back-
end code gets simplified. It reduces development efforts,
costs and brings faster time to market.

All these architectures are top-level and each is good
in its field. To implement the application, can choose any
of the architectures listed above, but it can be ineffective
either in terms of development or in terms of operation.
Therefore, it is necessary to rely on the application re-
quirements and on the advantages and disadvantages of
each of these architectures.

2.	Web application performance issues

At the moment, performance problems are among the
most common. Their solution requires compliance with
a number of rules formed as a result of studying the con-
struction of web applications. Globally, web application

I. Revenchuk, V. Steshko

67

ARCHITECTURAL SOLUTIONS AND OPTIMIZATION METHODS TO IMPROVE THE PERFORMANCE OF NODE.JS AND VUE.JS APPLICATIONS

performance issues can be divided into two categories:
data transfer and runtime.

–	 data transfer — loading any resources necessary for
the application to work;

–	 runtime — operation of the application, rendering
and processing user input.

Each of these categories contains nuances that distin-
guish high-quality programs from low-quality ones. Most
popular web application performance metrics:

–	 TTFB — time to receive the first byte;
–	 FCP — time until the first content display;
–	 FMP — time to the first significant display;
–	 TTI — time to start interactivity of page elements.
Among other things, can also identify common causes

of performance problems:
–	 poorly written code can lead to many problems

with web applications, including inefficient algorithms,
memory leaks, and application deadlocks. Older software
versions or integrated legacy systems can also reduce per-
formance;

–	 non-optimized databases. An optimized database
provides the highest level of security and performance,
while an unoptimized database can destroy an applica-
tion. Missing indexes slow down the execution of SQL
queries, which can lead to a decrease in the performance
of the entire application;

–	 DNS, firewall and network connection. DNS que-
ries make up the majority of web traffic. That’s why a
DNS problem can cause so many problems, preventing
visitors from accessing your site and leading to errors, 404
errors, and wrong paths. Similarly, network connectivity
and firewall performance are critical to access and perfor-
mance [4];

–	 external services. The problem with using external
services is that they are out of control;

–	 slow server;
–	 poor load distribution. This can lead to an increase

in response time due to incorrect distribution of new site
visitors between servers [5].

3.	Problems of choosing software solutions for Node.js

Node.js is a JavaScript runtime environment based on
the V8 engine that can compile JavaScript code into ma-
chine code. It is an open source cross-platform environ-
ment for developing server and network applications that
uses an event-driven, non-blocking I / O model, making
it simple and efficient for real-time data-intensive appli-
cations running across distributed devices.

Node.js has many frameworks, including: express.js,
nest.js, koa.js, adonis.each of the presented solutions has
its own characteristics and therefore it becomes difficult
to choose a suitable solution.

2.1 Express.js

Express.js is a flexible and minimalistic application
framework. It’s not built around specific components,

which gives developers the opportunity to experiment.
They get lightning-fast customization and a clean JS ex-
perience [6].

Features include: fast server-side development;
NoSQL database support out of the box; supports MVC
architecture; allows developers to create a RESTful API
faster.

Express.js is suitable for quickly creating web applica-
tions and services, as it has API generation tools available.

2.2 Nest.js

Nest is a server platform built to support developer pro-
ductivity. Nest, a framework written entirely in TypeScript
(it also supports JS), is easy to test and includes everything
you need.

Nest, by default, makes use of the Express library un-
der the hood. Nest significantly extends its functionality,
adds declarativeness, and also helps the developer to build
the application according to best architectural practices.

Features include: easily extensible — can be used with
other libraries; combines features of functional program-
ming, OOP and functional reactive programming; pro-
vides framework APIs that help use various third-party
modules available for any platform; has detailed and sup-
ported documentation;

Nest.js is used to write: clean and reusable code; code
using high-level constructs: interceptors, filters, pipes,
guards; scalable and tested applications. It provides the
right balance of structure and flexibility to effectively
manage code.

2.3 Koa.js

Koa.js is an open source web framework written by the
developers of Express.js. With Koa, they aimed to create
a smaller and more reliable platform for web applications
and APIs. It offers a wide range of effective methods to
speed up the process of creating servers. [7].

Features include: a modern and promising solution;
built-in error catchall that prevents crashes; using a con-
text object that contains request and response objects.

Used for creating servers, routes, and handling re-
sponses and errors.

2.4 Adonis.js

Adonis is a Node.js MVC framework for consistent,
stable and expressive code. Adonis takes care of many of
the time-consuming details of development by offering a
stable ecosystem for server-side web applications. It was
designed to bring joy and ease to developers in their work,
so it neglects a consistent and expressive API to develop
full-featured web applications. This framework follows the
same principles as Laravel [8].

Features include: API and session-based authentica-
tion system; excellent security system; a powerful ORM
that helps create secure SQL queries; validation of user
input data.

Ideal for building RESTful APIs.

68

Each framework has its own capabilities and approach-
es. Architectural solutions and optimization methods can
be applied to each of them. But the most attractive frame-
work is Nest.js. It uses good architectural approaches and,
along with optimization methods, will allow to get a scal-
able, structured and productive backend application.

4.	Determination of optimization methods

Common methods for optimizing web applications in-
clude the following.

Data transfer
CDN — helps speed up loading for geographically dis-

tributed clients.
Resource prioritization — acceleration of page loading

using the correct resource loading strategy. Browsers allow
you to set priorities for different types of resources and
load earlier what is important for the first drawing.

Static compression — is a compression algorithm that
reduces the weight of static and, accordingly, increases the
download speed.

WebP vs Png vs Jgp. WebP is a great alternative to Png.
In addition to the lower weight of the images, WebP is
practically the same quality and has a fast loading time
[9].

TTFB. Time to receive the first byte of the applica-
tion page after sending a request from the client. It is an
important metric. This is a complex metric that primarily
depends on what operations are performed on the server
during Request processing. A long response time can be
related to dozens of factors: application logic, slow data-
base operation, routing, software platform, libraries, lack
of processor power or memory.

HTTP2 can speed up page loading by multiplexing or
compressing headers [10].

Runtime
requestIdleCallback is a function that allows to exe-

cute code at the end of a frame (tick) or when the user is
inactive.

requestAnimationFrame allows to schedule anima-
tions correctly and maximize the chances of rendering at
60 frames per second.

DOM manipulations are expensive, and they need to
be performed carefully and meaningfully. Vue, provides
optimized work with the DOM due to the use of a lighter
version — VirtualDOM.

Virtual scrolling and pagination. These methods are
used to display a list with a large number of items. In this
case, either infinite loading with virtual scrolling or pagi-
nation should be used. If you do not use this approach
or use it partially, for example, only infinite loading, then
performance can be significantly reduced [11].

60 FPS by pointer-events: none — with this feature
you can achieve 60 FPS when scrolling the page. It works
on this principle: all mouse handlers are disabled while
scrolling.

Build
Webpack is a module bundler. One of the most power-

ful and flexible tools for building frontend. It analyzes ap-
plication modules, creates a dependency graph, and then
builds the modules in the correct order. It has the ability to
optimize the build, which in turn improves performance.

Code splitting — by splitting the code into chunks, you
can optimize the first load [12].

Minification — reducing the size of the final build by
removing unnecessary characters from HTML, JS, CSS
that are not needed to display the page: comments, in-
dents [12].

Dead code — unused code is removed from the final
build, thereby speeding up page loading.

If your application uses a library that needs only a few
methods, then you need to extract only the methods you
need when importing, not all of them. This affects the size
of the final bundle and, as a result, performance.

When you download fonts locally, you need to make
sure that you are using compressed font formats for mod-
ern browsers, such as WOFF and WOFF2 [13].

Lazy loading of modules / routes is a tool that is avail-
able in all popular frameworks and libraries. Allows you to
“lazily” load chunks of the app’s functionality.

Chaching. Cache API, ServiceWorkers, App Shell
model. Cache API is a storage for network responses that
we have full control over. Service workers are specialized
JavaScript assets that act as proxies between web browsers
and web servers. They aim to improve reliability by pro-
viding offline access, as well as boost page performance.
An indispensable aspect of service worker technology is
the Cache interface, which is a caching mechanism whol-
ly separate from the HTTP cache. App Shell architecture
is one of the most efficient ways of building web apps that
are loading almost instantly [14].

Lazy loading of images and videos.
Using indexes.
Application speed testing.
In addition to general methods, there are a number of

those that use Vue technology:
–	 functional components. Let’s assume that there is

a simple, small component whose task is to display a par-
ticular tag, depending on the passed value. You can op-
timize this component by adding the functional attribute
– functional. A functional component is compiled into a
simple function and has no local state.

–	 keep-alive is a wrapper component over the router.
All components in the router will be created and destroyed
when switching between routes. If the components are
heavy, the interface may hang at the time of switching.
Vue provides the ability not to destroy, but to cache and
reuse, thereby preserving the state of the component. This
optimization will lead to increased memory consumption
as Vue needs to keep them alive. This approach should
not be applied thoughtlessly [15].

I. Revenchuk, V. Steshko

69

–	 lazy loading of components. In a traditional com-
ponent import, the child component is loaded as soon
as the browser reaches the import instruction. However,
if the component is large, then it makes sense to load it
asynchronously. Vue provides this feature out of the box.
It will only load the component when needed and display
it when it is ready. When using a bundler such as Webpack,
the child component will be extracted into a separate file,
which will reduce the weight of the file on initial down-
load. Lazy loading can also be applied to components
used for routes. Each of the routes will be loaded when
requested.

–	 vuex. Work with commits. Commits, unlike actions,
are synchronous. If we assume that there is a need to save
a large array of data, then its processing will block the in-
terface during operation. To solve the problem, you can
split the array into parts and add them one by one, giving
the browser time to display. With this approach, you can
add a load indicator, which will improve the UX.

–	 disabling reactivity. The store contains an array of
objects with a high level of nesting, and Vue, according to
its behavior, will perform a recursive bypass of all nested
fields. If the application is built in such a way that it de-
pends on the top-level nesting object and does not refer to
reactive data several levels lower, then this reactivity can
be removed, making it easier for Vue to work.

Conclusion

To create apps that people want to use that attract and
retain a user, it’s necessary to create a good user experi-
ence, and part of that experience is fast content loading
and responsiveness to user interaction (response time).
Therefore, the use of performance improvement methods
is an important part of the product being developed. Well-
built architecture and good performance are the key to a
high-quality product.

References:

[1]	 Керівництво Microsoft з проектування архітектури, 2 ви-
дання. URL: https://dut.edu.ua/uploads/l_1507_99407341.
pdf.

[2]	 Роберт Сесіл Мартін, Чиста архітектура – містецтво
розроблення програмного забезпечення // 2019 – 368 c.

[3]	 Як обрати архітектуру для Web-додатку. URL: https://blog.
ithillel.ua/articles/web-application-architecture.

[4]	 The 10 most common web app performance problems. URL:
https://www.tricentis.com/blog/10-most-common-web-app-
performance-problems.

[5]	 Web Application Performance: 7 Common Problems. URL:
https://stackify.com/web-application-problems/.

[6]	 Архітектура JS Backend: підводні каміння, принципи ро-
боти, лайфхаки. URL: https://dou.ua/forums/topic/33590/.

[7]	 Comparison of Node.js Frameworks. URL: https://inven-
torsoft.co/blog/top-14-node-js-frameworks-comparisson.

[8]	 Node.js Frameworks. URL: https://www.geeksforgeeks.org/
node-js-frameworks/.

[9]	 Оптимізація веб-сторінок та додатків. URL: https://
codeguida.com/post/189.

[10]	18 Tips for Website Performance Optimization. URL: https://
www.keycdn.com/blog/website-performance-optimization.

[11]	6 Ways to speed up your Vue.js application. URL: https://
betterprogramming.pub/6-ways-to-speed-up-your-vue-js-
application-2673a6f1cde4.

[12]	Jeremy L.Wagner, Web Performance in Action // 2016 – 376 p.

[13]	9 tricks to eliminate render blocking resources. URL: https://
blog.logrocket.com/9-tricks-eliminate-render-blocking-
resources/#load-custom-fonts-locally.

[14]	Mastering browser cache. URL: https://vueschool.io/articles/
vuejs-tutorials/vue-js-performance-mastering-cache/.

[15]	KeepAlive, Rendering Mechanism, Performance Vue. URL:
https://vuejs.org/guide/introduction.html.

The article was delivered to editorial stuff on the 05.09.2022

ARCHITECTURAL SOLUTIONS AND OPTIMIZATION METHODS TO IMPROVE THE PERFORMANCE OF NODE.JS AND VUE.JS APPLICATIONS

