
49

інфОрмаційні технОлОгії. інтелектуальні системи

уДК 004.4: 004.4 DOi 10.30837/ bi.2022.1(98).06

Ilona Revenchuk1, Yevhen Ostashko2
1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

ilona.revenchuk@nure.ua, ORCID: 0000-0002-5188-9538
2 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

yevhen.ostashko@nure.ua

MINIMIZING THE COSTS OF BUILDING COMPLEX CROSS-PLATFORM
APPLICATIONS WITH FLUTTER AND FIREBASE

In our time one of the most if not the most common types of services is client-server ones. There are many frameworks
written in many programming languages for both client applications and server ones, especially considering many different
popular operating systems that are used by people today. With this many options, the question of which technologies
to use to achieve the goal with minimum sacrifices is always relevant and in this article, we research what might be one
of the most convenient technologies for client-server development not only for applications with relatively small amount
of users but huge ones as well that allows for 1-2 developers to relatively quickly develop, release and maintain big systems
with multiple client applications.

As a result of the work, there has been performed a research on the technology for developing cross-platform
applications – Flutter, the easiness of its use, and its advantages compared to alternatives, on Firebase services for
minimization of the costs to customize the server and on the combination of these technologies for modern client-server
application development.

INFORMATION SYSTEM, SERVERLESS, FIREBASE, FLUTTER, DART, CLEAN ARCHITECTURE.

І.А. Ревенчук, Е.В. Осташко. Мінімізація витрат на створення складних кросплатформових додатків за до-
помогою Flutter та Firebase. у наш час одним із найпоширеніших, якщо не найпоширенішим видом сервісів
є клієнт-серверні. Існує багато фреймворків, написаних багатьма мовами програмування як для клієнтських
програм, так і для серверних, особливо враховуючи багато різних популярних операційних систем, якими ко-
ристуються на сьогодняшній день. З такою кількістю варіантів питання про те, які технології використовувати
для досягнення мети з мінімальними витратами, завжди актуальне і в цій статті ми досліджуємо технології, які
можуть бути одними із найзручнішими для клієнт-серверної розробки не лише для додатків з відносно невели-
кою кількістю користувачів, але і для великих, що дозволяють 1-2 розробникам відносно швидко розробляти,
випускати та підтримувати великі системи з кількома клієнтськими програмами.

За результатами роботи було проведено дослідження технології розробки кросплатформних додатків –
Flutter, простоти її використання та переваг перед альтернативами, сервісів Firebase для мінімізації витрат на
налаштування серверної частини та взаємодії цих технологій для розробки сучасних клієнт-серверних програм.

ІнФОрМАЦІЙнА СИСТеМА, БеЗСерВернА, FIREBASE, FLUTTER, DART, ЧИСТА АрХІТеКТурА.

Introduction

Cross-platform development is the most effective when
it comes to client applications since you use one code
base for multiple applications simultaneously increasing
amount of people the app is available for and amount of
people that are needed to develop it. Fewer code results
in fewer bugs, their faster resolution, and quicker imple-
mentation of new features. Respectively fewer hours of
work are required for the whole cycle of development that
results in the same goal being achieved with a lot fewer
resources than if each application had been developed
by separate teams using native development frameworks.
This approach has been spreading rapidly since its first in-
troduction and is one of the most popular ones at the time
of the article.

Today many such cross-platform frameworks exist and
so the problem of choosing the most suitable one arises
again. Different frameworks support different operating
systems, use different programming languages, and have
communities of different sizes. That is where the Flutter
framework, that we are researching in this article, shines
in theory, not only is it the most modern cross-platform

framework at the time of the article, which means it in-
corporates the most modern approaches in software de-
velopment it also supports 6 of the most popular operat-
ing systems with the single codebase (Android, iOS, Web,
Windows, Linux, MacOS) [1]. The practical side of this
framework is what needs to be researched to find out if the
framework can be used in most use-case scenarios.

For the client-server application, the client alone is
obviously not enough so the question arises of what tech-
nology to use for the server side. Just like with a client ap-
plication, many options are available for back-end devel-
opment, but the simplest one of all is to use the so-called
“serverless” approach. That approach means using exist-
ing services such as Amazon web services or, in our case,
Firebase, that do most of the work, such as scaling, secu-
rity, and open API for us. Not having to set up and pro-
gram the server site has its disadvantages, which we will
talk about later, but in most cases, such an approach saves
a lot of time and money speeding up the development
process and moving release deadlines earlier. Since con-
figuring the server using the “serverless” approach does
not require coding, minimum training and education are

50

Біоніка інтелекту. 2022. № 1 (98). С. 49–57 хнуре

required so the same experienced developers that are de-
veloping the client application can take on this job as well
subsequently making the need for front-end and back-end
teams to use the time to communicate and sync their work
non-existent.

1. How Flutter works

During Flutter development, applications run on a
virtual machine, which allows you to reflect changes in
the codebase without the need to completely recompile
the application, which speeds up the development sig-
nificantly, especially compared to native mobile devel-
opment (Android/iOS). For the release version, Flutter
applications are compiled directly into machine code,
regardless of whether it is on Intel x64 or ARM, or even
on JavaScript if we compile for the web, and as a result,
we get an installation file specific for the target platform.
The framework is open access and has an active ecosystem
of third-party packages that add functionality to the basic
framework [2][3].

1.1. Structure

Flutter exists as a series of libraries divided into dif-
ferent layers (pic. 1) that can be replaced if needed [4].
No layer has privileged access to the layers below it, and
every part of the framework is designed to be replaceable
or completely removed as needed.

The lowest layer, called Embedder, is the layer that
procures the cross-platform capabilities of the Flutter
framework. It’s written using the programming language
corresponding to the target platform (Java and C++ for
Android, Objective-C for iOS, etc.), so each platform that
Flutter supports has its own embedder. This layer ensures
the native thread setup for Flutter to work and contains
native plugins to allow the framework to use the plat-
form’s native capabilities, such as a camera for mobile
and many more. Also, this layer converts the application
interface configuration, provided by the higher layers, into
native drawn elements.

Fig. 1. Flutter’s architectural layers

The next layer above the Embedder is a Flutter Engine
that is written in C++ and supports primitives, required
for the Flutter applications. The engine rasterizes the
composite scenes each time a new frame needs to be ren-
dered. It provides a low-level implementation of Flutter’s
core interface, including graphics, text composition, file
system access, plugin architecture, and a Dart compila-
tion toolchain. The engine is available for frameworks
through the corresponding package – dart:ui, which
wraps the underlying C++ code in Dart classes.

The top-level layer is the one developers interact with
the most – the Framework layer. This layer contains vari-
ous libraries for interface build that are abstractions to the
lower-level components to ease the development process,
speeding it up consequentially. If going from the lower
level of the Framework to the higher the following struc-
ture is present:

– fundamental classes and building blocks such as
animations, drawing, and gestures;

– rendering layer, which provides abstractions for
working with the layout;

– widget layer, which is an abstraction of the compo-
sition. Each rendering object from the rendering layer has
a corresponding widget class, and this layer also allows
you to define combinations of widgets that can then be
reused;

Material and Cupertino libraries that provide widgets
typical of Material and iOS design languages.

1.2. Rendering

When analyzing cross-platform frameworks, not
the last thing they pay attention to is its performance.
Surprisingly, Flutter’s rendering technology gives it a level
of performance comparable to a single-platform frame-
work. In the example of mobile cross-platform frame-
works, an abstraction is usually created over the interface
libraries of specific platforms. These native libraries usu-
ally convert classes to a view on a Canvas object. The in-
teraction of cross-platform framework code with native
creates many additional processes that slow down the ap-
plication. Flutter, in turn, minimizes such abstractions by
not using native rendering libraries in favor of its widget
structure. The Dart code that draws the Flutter app view
is compiled into native code that directly uses drawing on
the canvas. Flutter uses Skia technology for rendering,
just like Android. The framework engine also includes its
own private Skia repository, allowing developers to update
their applications with the latest improvements without
having to update the native operating system version.

The principle of Flutter is “what simple is fast” [5].
The flow of data from the event to the rendering instruc-
tions can be seen in fig. 2.

So, the rendering process goes like this:
– when Flutter wants to redraw its fragment in the

corresponding widgets, a special “build” method is
called;

51

Fig. 2. Rendering pipeline

– during the build phase, Flutter converts the widget
structure into a corresponding tree of elements (fig. 3)
with one element per widget. Elements are divided into
component elements, which simply contain other ele-
ments, and elements of render objects, which participate
in the drawing phase;

Fig. 3. Transformation of the widget’s structure
into a tree of elements

– during the construction phase, Flutter creates or
updates an object that inherits from RenderObject for
each element of the render object in the tree (fig. 4);

Fig. 4. Transformation of the elements’ tree
into a tree of render objects

Next, the framework traverses the render tree depth-
first and passes down size constraints from parent to child.
Then the descendants respond by passing their sizes to the
parents, which must be within the received limits (fig. 5).
After that, each object is ready for drawing.

The root of all render objects is the RenderView, which
represents the full output of the render tree.

Fig. 5. Passing constraints and dimensions
in the render object tree

2. Firebase services

Firebase contains many special services such as
Machine Learning, that are not typically used in an aver-
age service so they will be omitted and the most useful and
common ones will be described. The Firebase architec-
ture consists of several components that interact with each
other to provide a framework for developing and hosting
web and mobile applications [6]. The following are useful
for our purpose:

– Firebase Cloud Storage is an object storage that is
available on Google Cloud platforms. When this service is
added to Firebase, the application gets access to Google’s
security measures and the ability to safely download or
upload data;

– Cloud Firestore is a scalable, flexible database ser-
vice for server, mobile, and web development. It serves as
a NoSQL document database. Provides “out of the box”
access to web sockets, that is, the ability to reactively up-
date data in the client application on database changes. It
also has its own system of security rules, which is written
in a JavaScript-like programming language and controls
access to collections and documents according to user
needs;

– Authentication – can be used for simple user au-
thentication through login and password, mail, phone
number, and various social networks;

– Hosting – hosting service for web content. It can be
combined with cloud functions to develop and host your
own microservices;

– App Distribution – allows you to distribute pre-re-
lease versions of applications and configure a list of testers
for them;

– Cloud Functions – provides an opportunity to cre-
ate both HTTP endpoints and trigger functions that re-
spond to prescribed events, such as creating a document in
a certain collection. Useful when services that are needed
to implement some functionality in the application have
webhooks, for example, the Stripe payment management
service;

– Remote Config is a key-value type cloud data stor-
age for managing some flags and parameters necessary for
the client application, for example, the minimum version
of the application to which the user will be forced to up-
date the application;

MINIMIZING THE COSTS OF BUILDING COMPLEX CROSS-PLATFORM APPLICATIONS WITH FLUTTER AND FIREBASE

52

– In-App Messaging allows you to create a system for
sending push messages to device tokens, usually stored in
Cloud Firestore in the user’s document. It is especially
useful on the mobile platform, where push notifications
are most common;

– Crashlytics – allows you to track errors in applica-
tions connected to the service. May contain error codes
and messages, and also tracks app crashes;

– Performance – allows you to see how expensive cer-
tain processes in the application are, on which platforms,
and with which data. Useful to use for complex function-
ality to test the impact of changes on performance;

– Google Analytics – allows you to create many
events that can happen in the application and analyze
them with the help of real users. In this way, it is possible
to highlight the priority functionality, which is used by al-
most no one, and plan the development based on real data;

– Dynamic Links – allows you to develop so-called
“deep” links that will send the user to, for example, a cor-
responding mobile application, where it will be processed,
instead of a web page;

– AdMob allows you to add integrated Google adver-
tising to the application, immediately providing a method
of monetizing the service.

All of the Firebase services listed above would be use-
ful for a typical service providing not only the means of
implementation of the basic functionality but supporting
services to help improve the user experience as well.

3. Flutter-Firebase communication

Since both Flutter and Firebase belong to the same
company – Google, the interaction between these tech-
nologies is made as accessible as possible [7]. It is also
important that any updates and changes in Firebase will
be adapted to the Flutter context in priority, which ac-
celerates the improvement of the service thanks to new
functionality and bug fixes.

Flutter has all the necessary libraries for a comfortable
interaction of the client application with Firebase services
on the website, which distributes both custom and official
packages for the framework (pub.dev). They abstract the
work with the Firebase API, which makes it much easier
to use these services without creating a mechanism for
working with Rest, as you would have to do with a regu-
lar server. The same packages can also be found for most
modern frameworks such as React, View.js, Java Spring,
etc.

4. Flutter’s performance

Before jumping into using the Flutter framework with
all of its stated incredible capabilities a company should
still research all of the problems the framework may pro-
duce and the most common question is if the productivity
tradeoff is small enough to warrant the use of the frame-
work instead of the native solutions, that has been pre-
sent on the market for decades and has been tested and

improved with time more than any other solution for the
platforms.

The Flutter framework makes the whole development
process many times easier, faster, and consequentially – a
lot cheaper, but if the result product’s productivity is in-
terfering with users’ experience it can make this product
very unsuccessful on the market, making all of the spent
recourses on the development go to waste and the saving
of a big part of them, choosing a cheaper development
process, a bad decision that led to nothing but losses. That
risk is the reason why relatively new technologies usually
take years to be incorporated into big companies and are
mostly used by small companies that do not have a lot to
lose. In a sense, these small companies are stress-testing
these technologies on real projects for big companies to
incorporate if proven effective.

Flutter is not an exception, though its rapid growth in
popularity is superior to most, not least because its origin
is one of the biggest companies in the world – Google,
which also used it to rewrite some of their popular, exten-
sively used products, such as Google Pay. These products
are performing incredibly in production and have been
proven to be as effective as their native counterparts with
the benefit of a lot simpler codebase, which inclined many
to try Flutter for their projects.

Real big projects written using Flutter prove its effec-
tiveness by themselves, but knowing exactly how different
Flutter’s productivity is compared to the native apps is es-
sential, especially if the project has to be as fast as pos-
sible, for example, a video game would need every frame
per second it can get for the most optimal experience of
the user even on the old devices.

The precise comparison of the Flutter and native
Android apps has been done and published in an article
before [8] and it presents a relatively accurate represen-
tation of the productivity differences between the Flutter
and other platforms’ native SDKs since the technology,
that Flutter uses, is practically the same for every platform
and boils down to drawing elements on the platform pro-
vided canvas.

In the mentioned article the study concludes with the
native app performing faster than a Flutter one in every
aspect, except for the threads rendering, the fact that
there is an aspect of the cross-platform framework that
works faster than the native counterpart is amazing, but
the rest of tests resulted in the Flutter’s loss. But that does
not mean that Flutter’s productivity is an issue, since
looking closely into the collected by the author data the
only big difference in performance, that can be spotted
by the naked eye is app startup, where Flutter seems to be
performing heavy tasks, the rest of tests show a minuscule
difference of average 50ms difference and the most com-
mon tasks that users will face perform with the difference
in a smaller range of 10-30ms.

I.Revenchuk, y. Ostashko

53

MINIMIZING THE COSTS OF BUILDING COMPLEX CROSS-PLATFORM APPLICATIONS WITH FLUTTER AND FIREBASE

In conclusion, the Flutter apps perform efficiently
enough for the absolute majority of cases in the app de-
velopment sphere, since most apps tend to not perform
complex user interface tasks.

It is also important to note that the huge Flutter popu-
larity led to a rapid increase in the corresponding team’s
funding and the fact that it’s an open-source project al-
lowed countless developers to improve different aspects of
the framework themselves. Many of those changes have
been officially incorporated into the framework’s stable
version after the review, so Flutter’s efficiency increas-
es very fast compared to most other frameworks which
means the productivity may increase further in the future.

5. Cloud Firestore

Since Cloud Firestore has a role of a database, which
would be storing most of the data of the absolute majority
of apps using it it’s important to know how it works and
how productive it is compared to the alternatives [9][10].

5.1. Servers’ locations

When it comes to the productivity of a server the
first thing that comes to mind is its location. The closer
the server is to the user the faster the response time will
be. When choosing the location for the Google Cloud
Platform services, which include Cloud Firestore, the de-
veloper is presented with two options: a multi-region loca-
tion or a regional location.

Multi-regional location maximizes the availability and
durability of your database. It stores data replicas on mul-
tiple servers across multiple regions, some regions, called
witnesses only participate in the process of replication.
This method allows having consistent data and request
times across multiple regions, which is recommended for
global apps. At the time of the article, 2 multi-regions are
available: Europe and the United States.

Single region location maximizes the efficiency and
cost of the data transfer for the specific region. Using
a single region location would be more effective for the
apps, that are not designed to be global and are used in
a specific region, since request time increases the farther
you are stationed from the selected region. Multiple re-
gions are available across America, Europe, Asia, and
Australia.

Since Firebase charges the user by the number of
documents you read, write and delete obviously a multi-
regional location would charge more for every operation
since the data needs to be replicated to support effective
data accessibility across multiple regions.

5.2. NoSQL Advantages and Limitations

Since Cloud Firestore is a NoSQL document-oriented
database it is important to understand the principles be-
hind such a data-storing approach since it would not be
effective for every service to use it.

The main characteristics of NoSQL Databases archi-
tectures are [11]:

– schema-less structure;
– permitting data representations to grow effectively

and dynamically;
– horizontal scaling, by data replication of the collec-

tions and sharding over massive clusters.
The main advantages of NoSQL Databases:
– volume: data at rest – terabytes to exabytes of exist-

ing data to process;
– velocity: data in motion – streaming data, millisec-

onds to seconds to respond;
– variability: data in many forms – structured, un-

structured, text, etc.;
– veracity: data in doubt – uncertainty due to latency,

deception, ambiguities, etc.;
– not built on tables and does not employ SQL to ma-

nipulate data;
– can handle unstructured, messy, and unpredictable

data;
– helpful for working with large sets of distributed

data.
The disadvantages are the following:
– disorganized data, it’s harder to query needed data;
– the lack of JOINs – the lack of relations between

data makes the developer send multiple requests to access
some data;

So, in conclusion, if the data for the service needs a
strict structure for maximum efficiency it would be rec-
ommended to use a conventional relational SQL data-
base, but that does not mean that Cloud Firestore cannot
be used for such cases. Even though the documents’ struc-
tures are not strict and inside one collection documents
with different structures are allowed to occur the structure
can be enforced manually through the developers’ efforts.

In the Cloud Firestore on the top level are only col-
lections, each collection can contain only documents, but
each document can contain a subcollection. The structure
can be achieved through the client application’s effort by
defining strict models and paths for data to be stored. That
does not solve the problem of fetching multiple different
documents through one request but it makes it possible to
predict the documents’ contents and locations. For most
tasks that may occur in a typical service that should be
enough.

6. Experiment

Any theory needs to be tested in practice to have value
as research. In our case, a test service with a client appli-
cation written using the Flutter framework that uses most
Firebase services to function needs to be developed and
tested.

6.1. Experiment steps

The following tasks need to be performed:
1. basic Flutter application setup that includes app ar-

chitecture, presentation layer architecture for state man-
agement, navigation, and dependency injection setups;

54

2. check how native applications for supported plat-
forms look and feel;

3. create a Firebase project and connect it to the
Flutter app;

4. add registration and authentication using the
Firebase authentication service since it’s the most com-
mon use-case;

5. add database usage with Cloud Firestore, Cloud
Storage and Real-time database, test their security, add
rules;

6. add Cloud functions: HTTP ones and triggers for
collections’ documents’ states changes;

7. add Remote Config usage, push notifications using
In-App Messaging, dynamic links and adds using AdMob;

8. add analytics using Google Analytics, Crashlytics,
and Performance;

9. distribute mobile apps using app distribution and
host web apps using Hosting.

Every listed development task needs to be tested on the
speed of implementation, its complexity, and if the result
is satisfactory in terms of performance and security.

6.2. Experiment results

As a result of the experiment, a Flutter test applica-
tion has been developed with Firebase services covering
the need for a database, file storage, authentication, etc.
Below the experience from the development process of
each experiment step in the order presented in the previ-
ous section is listed.

6.2.1. Flutter application architecture

The Flutter community has created many libraries
that make initial project setup and things like navigation,
dependency injection, and interface state management
easier. For the test project, a flutter_modular package has
been chosen as it makes implementing a modern app ar-
chitecture easier. The package allows us to divide our app
into different, separate modules, each module has its own
injected dependencies and they are injected and disposed
of depending on the navigation state, so if there are no
screens, that belong to a specific module, in the screens
stack the dependencies, if were injected prior, are dis-
posed of.

During development, there were discovered 2 things
that flutter_modular lacks, that needed to be implement-
ed separately by downloading package and changing it lo-
cally.

First, nested navigation, which allows us to open
screens inside other screens, that we use for the main
screen with the bottom navigation bar does not have cach-
ing. That means each tab is loaded every time the user
navigates to it, which is a bad practice as many unneces-
sary requests are sent.

Second, there was no ability to push several screens at
the same time. This is crucial when it comes to opening
dynamic links and push notifications, as when we lead the

user to the corresponding screen the screens back-stack
needs to be filled with the correct items.

The basic app structure in a final solution is as follows:
an app is divided into features, and each feature has its
own package, so it’s physically separated from the other
features. The feature has 3 packages inside for each layer
according to the clean architecture principles. The pres-
entation layer also has a navigation package, that contains
the required info for other features to navigate into it if
needed.

For the presentation layer architecture for state man-
agement, a BLoC (business logic component) was chosen
since it’s the most popular solution at the moment and
perfectly solves the problem of separating the UI compo-
nents and business logic.

The version of Dart at the time of the article does not
have so-called sealed classes like, for example, Kotlin
programming language does. But surprisingly it could be
solved by the code-generation package called freezed. It
automatically generates boilerplate code for models, such
as serialization/deserialization, and comparison, and al-
lows the addition of a similar to sealed classes behavior
to a class. This has been extensively used for data transfer
objects and navigation information so that we can pass
needed parameters to a screen through such a class. Other
code generation packages were also used, for example, to
implement localization only JSON files with strings need-
ed to be filled manually, and the needed code was gener-
ated with a corresponding command.

6.2.2. Result client applications

The Flutter framework out of the box contains most
if not all widgets for both consistent Android and iOS
development in the material and Cupertino packages
respectively. Many animations and interactions, such as
scroll, are native by default and are performed differently
depending on the platform, on which the application is
launched. So it is very easy to make the application feel
natural on different platforms. Sometimes however behav-
ior needs to be implemented manually. We can use differ-
ent widgets and animations depending on the platform, so
to achieve the maximum native feel some understanding
of Android and iOS platforms’ design conventions needs
to be present, so the cases that are not handled automati-
cally can be implemented manually (often easily with al-
ready pre-defined widgets from the corresponding pack-
age).

A similar situation is with desktop applications, how-
ever, the ability to build Flutter for desktop is fairly new
at the time of the article so even though there are already
several desktop applications in a production written in
Flutter many features remain absent. For our needs, the
firebase support has not yet been implemented for the
desktop and only MacOS firebase support is in beta now
so we do not test those.

I.Revenchuk, y. Ostashko

55

For the web application, some changes need to be im-
plemented in the code. Both mobile and web have plat-
form-specific packages, using which on an unsupported
platform will lead to an error, so if their usage is required
a condition, that checks the platform needs to be used.
Apart from that launching an app on the web is easy, how-
ever, at the time of the article, the Flutter web is not ideal
for every use. The Flutter web feels like a mobile applica-
tion on the web, even text selection is a fairly recent fea-
ture, so there are only the following use cases, when it can
be useful:

– Progressive Web Apps;
– Single Page Apps;
– Existing Flutter mobile apps.
Flutter is not suitable for static websites with text-rich

flow-based content.

6.2.3. Firebase setup

The firebase project is easily created on the corre-
sponding website. It’s important to know that by default
the project is restricted and you need to connect a bank
card to it so its full capabilities, like Cloud Functions, are
unlocked. The charges are not made until the specified
threshold of usage, since this is a test app and the thresh-
old is quite high we do not need to worry about it.

Next comes the connection of the firebase to our
Flutter application. At the time of the article only
Android, iOS, and Web Platforms are supported with the
MacOS platform in Beta. Each platform needs its sepa-
rate configuration, but the usage in the Flutter app will be
with the same code.

Finally, for us to be able to connect to databases and
authentication services we need to set up them. For data-
bases and storage, the server location needs to be chosen,
the west Europe multi-regional location has been chosen.
For the authentication, we need to choose providers, the
email/password and google has been chosen.

6.2.4. Authentication

For every firebase service, a corresponding official
Flutter package has been made. For the authentica-
tion the package is firebase_auth. This package handles
the whole authentication process, and user caching and
provides a stream of authentication state changes. It also
supports password reset, where an email, defined in the
Firebase console, will be sent to the user.

The usage of this package is simple, for email/pass-
word authentication only a simple method with email and
password needs to be sent, if the user does not exist he
is created automatically. To store the user’s info a Cloud
Firestore needs to be used, the user’s document has the
same id as returned from the authentication method.

For the google sign in an additional package google_
sign_in is required, it provides a native google authenti-
cation process and returns necessary credentials, that are
later used with the firebase authentication.

6.2.5. Cloud Firestore, Storage and Real-time database
usage

For the cloud firestore the cloud_firestore package is
used. To gain access to the document or collection the
path can be inputted as a string or built with a builder-
like pattern. Cloud firestorm support web socket out of
the box, so access to any document or collection of docu-
ments can be responsive to changes, reflecting any chang-
es in the database in the application without the need for
data refresh requests. It makes the development process
faster and more efficient since any change to the docu-
ment is reflected automatically, without the need to han-
dle such cases manually.

Such a responsive approach has a disadvantage in the
case of data pagination. When we request a page of data
using a web socket loading the next page can be done in
one of two ways:

1. creating a new connection to the next page of data
and saving it separately. Such an approach makes it bur-
densome to handle all of the open connections and also it
can handle items addition and removal incorrectly;

2. disposing of a previous connection and creating a
new one with the data amount restriction increasing by
a one-page count. Such an approach works perfectly and
has no incorrect behavior, however, it re-requests previ-
ously loaded pages of data again, and any operations on
documents are charged.

So, in terms of cost-effectiveness, it would be better to
request data statically and reflect its changes only with a
refresh sequence. In that case, we trade of user experience
for the lowering cost of the system to run. The decision
of whether the data should be loaded using web sockets
or an HTTP request should be decided for each situation
separately.

The security rules for the operations with a Cloud
Firestore database are made in a JavaScript-like language
[12]. To add a rule, you add a path to the document you
want to add a rule to (for example “/users/{userId}”) and
define conditions for read and write operations. The rules
use the authenticated user’s id so you need to use the
Firebase authentication service to able to establish flexible
security.

Cloud Storage works in a similar way to the Cloud
Firestore, only access to the files is made through the pub-
lic URL, which is acquired with a special method of the
corresponding package – firebase_storage. The URL will
grant complete access to the file that it leads to. The rules,
which are defined the same way as for Cloud Storage,
only affect the method, that returns a public URL for the
file, so if, for example, you need to fetch multiple pictures
to show the user you would need to call the URL method
multiple times for each file for the rules to be applied.
That is an ineffective and long process, so saving the URL
of the file in the corresponding document and generating
this URL with the file upload would be a more effective,

MINIMIZING THE COSTS OF BUILDING COMPLEX CROSS-PLATFORM APPLICATIONS WITH FLUTTER AND FIREBASE

56

scalable approach. If a file needs to be protected it would
be better to encrypt the URL than use the first method.

A real-time database (RTDB) is a predecessor of a
Cloud Firestore. It’s an efficient, low-latency solution
that requires synced states across clients in real-time [13].
Cloud Firestore scales better and has richer and faster
queries, so using it would be better to use it instead of
RTDB. The only viable use for an RTDB that has been
implemented in the test application is controlling user
presence. In cooperation with cloud functions, we can
track when the user is online since unlike Cloud Firestore
RTDB has an onDisconnect option. When the user’s in-
ternet connection disappears the cloud function changes
the user’s state in the corresponding document, allowing
us to know the user’s presence. That can be used, for ex-
ample, to know if we need to send the user a push noti-
fication for, for example, a new message in a chat. If the
user is already present in a chat the notification should
not be sent.

6.2.6. Cloud Functions

The Cloud Functions are a convenient way of adding
side effects to operations via triggers and creating HTTP
endpoints if needed. For example, we can send a push no-
tification on document creation without the need to per-
form this operation by hand from the client and spend the
user’s traffic and time. The triggers for document crea-
tion, update, and deletion are available. Also, there is a
trigger that is called on all 3 of those events – write trigger.

As to HTTP cloud function, one was used in our case
– a webhook for stripe operations. To know if the pay-
ment or any other stripe event was completed successfully
or with an error a webhook, which is basically an HTTP
endpoint, needs to be defined in the Stripe console. This
webhook will be called when defined in the Stripe console
events occur. In our case, a user’s document contains info
on an ongoing payment process and the status changes
based on the data received in the webhook.

Important to know that Cloud Functions have unre-
stricted access to all Firebase data and security rules do
not apply to operations inside them.

6.2.7. Remote config, In-App Messaging and AdMob

Remote config is just a cloud key-value pairs stor-
age, that lets you change the app’s behavior without the
need to release an update. For example, the app’s theme
change depending on the season can be handled that way.

Push notifications have been implemented in the fol-
lowing way: a user’s device token is fetched and stored in
their document on the authorization. When an event, that
needs a push notification to be sent occurs we create a
document in a notifications collection in Cloud Firestore
with all the needed info for the notification, such as the
sender and receiver id and the notification type. The
Cloud Functions trigger on notifications document crea-
tion uses an In-App messaging API to send a push to the
device token of the receiver [14].

For AdMob, the google_mobile_ads package is used.
The following advertisement types are available:

– banner – a rectangle above or below the screen;
– interstitial – full-screen ads that need to be closed

by the user;
– native – flexible type, that allows placing ads wher-

ever the developer wants, so ads are effectively integrated
into the app’s UI;

– rewarded – an ad that rewards users for watching
short videos and interacting with playable ads and surveys.

Advertisements are a great way of monetizing your app
as long as they do not severely interfere with the user’s
experience.

6.2.8. Analytics

Google Analytics, Crashlytics, and Performance are
all simple to implement via their corresponding Flutter
packages. The only thing needed for them is a Firebase
project setup, which has already been done earlier.

Google Analytics allows us to send any kind of event
with some simple key-value data with them. For example,
when the user enters a screen, we can send a correspond-
ing event with the specific screen data. When a sufficient
amount of data is gathered the app usage can be analyzed
and development priorities set based on users’ experiences
[15].

Crashlytics service is Google Analytics for errors and
crashes. It tracks both developer-defined errors, that are
sent manually through the API and app crashes. The
errors then can be seen in the corresponding tab in a
Firebase console and dealt with accordingly. In the pro-
cess of testing this service, it was discovered that there is
sometimes not enough info on an error or crash, which
makes fixing it hard, so maybe it would be better to use a
separate service. Also, Crashlytics does not allow for user
reports, which is a minus.

Performance is as simple as sending a request on some
operation start, and another one on its end. Useful for
complex operations to check their performance on many
different users’ devices.

6.2.9. App distribution and web hosting

App distribution allows to conveniently distribute of
mobile iOS and Android applications without the need to
go through their respective console setups. You can invite
testers through their emails so that they can gain access
to the application. The advantages of using Firebase App
Distribution compared to platforms’ consoles are the fol-
lowing:

– managing both iOS and Android pre-release distri-
butions from the same place;

– early releases can be delivered to testers quickly,
with fast onboarding, no SDK to install, and instant app
delivery;

– combined with Crashlytics we can get insights into
the stability of test distributions.

I.Revenchuk, y. Ostashko

57

Hosting your web application can be done on a custom
domain, which is usually bought, or on a domain provid-
ed by Firebase. Firebase also allows the creation of Beta
channels, allowing you to host test applications on a tem-
porary domain. The hosting needs some simple console
application to set up your project after which you can eas-
ily deploy your application with a command.

Conclusions

As a result of the study, research has been conducted
on Flutter and Firebase technologies and their synergy.

Flutter has been tested for the satisfaction of modern
application development standards and the speed and ease
of the development cycle.

A test service has been developed with the client side
on Flutter and Firebase as a backend. Most Firebase
services useful in a typical service have been used. It re-
quired 1 developer with only Flutter expertise to develop
in a short period of time a fully functioning service with
most typical features, that can be distributed for iOS,
Android, and Web platforms.

In conclusion, a Flutter and Firebase combination has
been proven a very cost-effective approach for develop-
ing client-server applications, especially for simple ones,
compared to a more conventional approach with multiple
native and server applications.

References

[1] Vaibhav Patil. Flutter-Modern and Easy Technology to Build
Applications // ResearchGate. – 2023. – Vol. 11, No. 2,
P. 458-459.

[2] Artem Velykyy. FLUTTER: A FULL INTRODUCTION TO
THE FRAMEWORK // Axon. – 2020. – P. 2-3.

[3] Flutter architectural overview [Electronic resource] –
Resource access mode: https://docs.flutter.dev/resources/
architectural-overview.

[4] Damian Białkowski, Felipe Diniz Dallilo. FLUTTER UM
FRAMEWORK PARA DESENVOLVIMENTO MOBILE
// ResearchGate. – 2022. – P. 3-5.

[5] Slavimir Stošović, Dušan Stefanović, Milan Bogdanović, Nikola
Vukotić. THE USE OF THE FLUTTER FRAMEWORK IN
THE DEVELOPMENT PROCESS OF HYBRID MOBILE
APPLICATIONS // ResearchGate. – 2022. – P. 5-6.

[6] Anil Trimbakrao Gaikwad. FIREBASE – OVERVIEW AND
USAGE // ResearchGate. – 2022. – P. 2-4.

[7] Jashandeep Singh, Swapnil Srivastva, Dipanshu Raj,
Shubhampreet Singh, Mir Junaid Rasool. FLUTTER
AND FIREBASE MAKING CROSS-PLATFORM
APPLICATION DEVELOPMENT HASSLE-FREE //
IRJMETS. – 2022. – Vol. 4, No. 4, P. 3-5.

[8] Damian Białkowski, Jakub Smołka. Evaluation of Flutter
framework time efficiency in context of user interface tasks
// ResearchGate. – 2022. – P. 4-5.

[9] Omar Almootassem, Syed Hamza Husain, Denesh Parthipan,
Qusay H. Mahmoud. A Cloud-based Service for Real-Time
Performance Evaluation of NoSQL Databases // Arxiv. –
2017. – P. 3-4.

[10] Azad, Avi Chaudhary, Jatin Chauhan, Basant Soam, Mr. Ashwini
Kumar. ANDROID APPLICATION USING FLUTTER
AND FIREBASE WITH LBRS TO FIND PEOPLE OF
THE SAME INTEREST AND COMMUNICATION
PLATFORM // IRJMETS. – 2022. – Vol. 4, No. 5,
P. 4773-4775.

[11] Wisal Khan, Teerath Kumar, Zhang Cheng, Kislay Raj,
Arunabha M Roy, Bin Luo. SQL and NoSQL Databases
Software architectures performance analysis and assessments
– A Systematic Literature review // 3. – 2022. – P. 3.

[12] Structuring Cloud Firestore Security Rules [Electronic
resource] – Resource access mode: https://firebase.google.
com/docs/firestore/security/rules-structure.

[13] Shayan Bagchi. Firebase-A Cloud Hosted NoSQL Database
// ResearchGate. – 2022. – P. 8-9.

[14] Bhavin M. Mehta, Nishay Madhani, Radhika Patwardhan.
Firebase: A Platform for your Web and Mobile Applications
// IJARSE. – 2017. – Vol. 6, No. 4, P. 46-47.

[15] Julian Harty, Haonan Zhang, Lili Wei, Luca Pascarella,
Mauricio Aniche, Weiyi Shang. Logging Practices with Mobile
Analytics: An Empirical Study on Firebase // Arxiv. – 2021. –
P. 1-3.

The article was delivered to editorial stuff on the 27.05.2022

MINIMIZING THE COSTS OF BUILDING COMPLEX CROSS-PLATFORM APPLICATIONS WITH FLUTTER AND FIREBASE

