
18

УДК 519.62

Ivan Bozhko1, Grygoriy Chetverykov2, Yaroslav Kolisnyk3

1 Khavkiv National University of Radio Electronics,
Kharkiv, Ukraine, ivan.bozhko@nure.ua

2Khavkiv National University of Radio Electronics, Kharkiv,Ukraine, grigorij.chetverykov@nure.ua,
University of Szczecin, Institute of Physics and Institute of Mathematics, chetvergg@gmail.com

3Khavkiv National University of Radio Electronics, Kharkiv, Ukraine, yaroslav.kolisnyk@nure.ua

THE Q# PROGRAMMING LANGUAGE INVESTIGATION

This work is the investigation of the current state of the existing tools for quantum computing, especially the
Q# programming language as the most developed tool for this nowadays. Since quantum computing is one of the
main research area today, the respective tools are being created. These tools should simplify the development of
quantum programs, on the one hand, and provide some platform for testing and running them, on the other hand.
So the authors investigated the currently available tools and provided the results in the article.

QUANTUM COMPUTING, QUANTUM COMPUTER, Q#, QUANTUM COMPUTING TOOLS,
MICROSOFT QUANTUM DEVELOPMENT KIT

Божко І.К., Четвериков Г.Г., Колісник Я.В. Дослідження мови програмування Q#. Дана робота являє
собою дослідження поточного стану існуючих інструментів квантових обчислень, особливо мови програ-
мування Q# як найбільш розвиненого інструменту для цього в даний час. Оскільки квантові обчислення
сьогодні є однією з основних областей досліджень, створюються відповідні інструменти. Вони покликані
спростити розробку квантових програм, з одного боку, і надати платформу для тестування і запуску їх, з
іншого боку. Тому автори дослідили наявні в даний час інструменти і представили результати в даній статті.

КВАНТОВІ ОБЧИСЛЕННЯ, КВАНТОВИЙ КОМП’ЮТЕР, Q#, ІНСТРУМЕНТИ КВАНТОВИХ
ОБЧИСЛЕНЬ, MICROSOFT QUANTUM DEVELOPMENT KIT

Божко И.К., Четвериков Г.Г., Колесник Я.В. Исследование языка программирования Q#. Данная работа
представляет исследование текущего состояния существующих инструментов квантовых вычислений,
особенно языка программирования Q# как самого развитого инструмента для этого в настоящее время.
Поскольку квантовые вычисления сегодня являются одной из основных областей исследований, созда-
ются соответствующие инструменты. Они призваны упростить разработку квантовых программ, с одной
стороны, и предоставить платформу для тестирования и запуска их, с другой стороны. Поэтому авторы
исследовали имеющиеся в настоящее время инструменты и представили результаты в данной статье.

КВАНТОВЫЕ ВЫЧИСЛЕНИЯ, КВАНТОВЫЙ КОМПЮТЕР, Q#, ИНСТРУМЕНТЫ КВАНТО-
ВЫХ ВЫЧИСЛЕНИЙ, MICROSOFT QUANTUM DEVELOPMENT KIT

Introduction

Quantum computing represents an alternative ap-
proach to automated computations using quantum
computers.

Despite the development of research in this field to-
day, for the first time, the idea of quantum computing
was advanced by the Soviet mathematician Yu.I. Manin
back in 1980 in his famous monograph “Computable
and uncomputable” [1]. However, more interest in
this type of calculation arose only in 1982, after the
American theoretical physicist Richard Feynman no-
ticed that not all quantum-mechanical operations can
be accurately transferred to a classical computer and
more efficiently carried out by quantum operations.

An additional relevance to the quantum computing
problem was added by mathematician Peter Shore, who
in 1994 proposed an algorithm that allows the expan-
sion of a n-valued number to simple multipliers with
polynomial complexity. On classical computers, this
task is much more complex and does not allow you to
get the result for a satisfactory time.

Since this task is the basis of many popular crypto-
graphic algorithms (for example, RSA) [2], the creation
of quantum computers may influence the security of the
data exchange in the network, and after the appearance
of a real prototype of a quantum computer, it can be-
come a global security issue.

Consequently, quantum computing is relevant
not only for scientific problems of quantum processes
modeling, but also relevant to the world of information
technology. In order to popularize them not only in the
scientific world, but also among developers, tools are
created to simplify the work with quantum algorithms,
such as the programming language Q#, which is consid-
ered in this paper.

1. Existing quantum computing tools

Over the past few years, with the growing popularity
of quantum computing research, tools and emulators
of quantum computers have begun to appear that allow
you to try calculations to practice. Here are some popu-
lar tools and their descriptions.

БИОНИКА ИНТЕЛЛЕКТА. 2018. № 1 (90). С. 18–23	 хнурэ

19

THE Q# PROGRAMMING LANGUAGE INVESTIGATION

1.1.	 Microsoft Quantum Development Kit
Microsoft has released a preview version of Quantum

Development Kit, which includes the new quantum
programming language Q#, integration with the Visual
Studio development environment, simulators that work
with both the local system and their powerful Azure
cloud platform, as well as libraries and code samples
that can be used as constructive blocks.

1.2.	 IBM Quantum Experience
IBM has created an experimental quantum 5-qubit

processor that is available to users through the Internet
[2]. On the IBM Quantum Experience website, you can
find a short tutorial that explains the basics of quantum
computing and system usage instructions, the configu-
ration of the queue access interfaces, a simulator that
allows you to simulate their configuration before run-
ning it on the actual machine, and access to the ma-
chine itself that allows you to run the configuration and
view the results.

1.3.	 Rigetti Forest
The Rigetti Forest package consists of the instruc-

tions based quantum language called Quil, an open
Python library for building Quil programs called pyQuil,
a quantum library called Grove, and a simulation en-
vironment called QVM (Quantum Virtual Machine).
pyQuil and Grove are open source programs available
on Github. Users can develop their applications using
pyQuil and Grove on their own computer, and then
transfer them to QVM for simulation through a web
portal that is available to registered users.

1.4.	 ProjectQ
ProjectQ is an open source software for quantum

computing, implemented in Python. This allows users
to implement their quantum programs in Python us-
ing a powerful and intuitive syntax. ProjectQ can then
broadcast these programs to any server part: a simulator
that runs on a classic computer, or a quantum computer
(for example, using IBM Quantum Experience). Other
hardware platforms are currently not supported.

In addition to these tools, there are others such as
Cirq, Quirk, QuTiP, but they are less powerful than
those described above.

As can be seen from the description of existing solu-
tions, most of them are complementary to existing pro-
gramming languages ​​(in particular, Python), but given
the new paradigm of computations, this may cause dif-
ficulties in programming algorithms using these tools,
therefore, a more flexible and powerful solution is a
separate programming language, which currently only
Microsoft offers.

Also, it is necessary to highlight the Intel solution
with the existing experimental quantum computer, but
it requires execution of queries to individual quibits
through the API, which complicates its use.

2. The Q# lanauge

As discussed above, one of the parts of Microsoft
Quantum Development Kit is a Q# language specifically

designed for quantum computing. In terms of software
engineering, this solution is most interesting as it allows
abstracting from the paradigm of classical computing
and classical programming languages and describing a
quantum algorithm using a special syntax.

Consider the language Q # in more detail.
2.1.	 Computing model
According to official Microsoft documentation [4],

a natural model for quantum computation is to treat
the quantum computer as a coprocessor, similar to that
used for GPUs, FPGAs, and other adjunct processors.
The primary control logic runs classical code on a clas-
sical “host” computer. When appropriate and neces-
sary, the host program can invoke a sub-program that
runs on the adjunct processor. When the sub-program
completes, the host program gets access to the sub-pro-
gram’s results.

In this model, there are three levels of computation:
•	C lassical computation that reads input data, sets

up the quantum computation, triggers the quantum
computation, processes the results of the computation,
and presents the results to the user.

•	 Quantum computation that happens directly in
the quantum device and implements a quantum algo-
rithm.

•	C lassical computation that is required by the
quantum algorithm during its execution.

There is no intrinsic requirement that these three
levels all be written in the same language. Indeed, quan-
tum computation has somewhat different control struc-
tures and resource management needs than classical
computation, so using a custom programming language
allows common patterns in quantum algorithms to be
expressed more naturally.

Keeping classical computations separate means that
the quantum programming language may be very con-
strained. These constraints may allow better optimiza-
tion or faster execution of the quantum algorithm.

Q# (Q-sharp) is a domain-specific programming
language used for expressing quantum algorithms. It is
to be used for writing sub-programs that execute on an
adjunct quantum processor, under the control of a clas-
sical host program and computer.

Q# provides a small set of primitive types, along
with two ways (arrays and tuples) for creating new,
structured types. It supports a basic procedural model
for writing programs, with loops and if/then statements.
The top-level constructs in Q# are user defined types,
operations, and functions.

2.2.	 Q# type system
The Q# language provides a small set of primitive

types, as well as two methods (arrays and corrections)
for creating new types of data (it means that the lan-
guage have a bit more constraints than classical lan-
guages, which was made for optimization purposes).
In general, the language usually supports a procedural
conditional programming model (if -this) and cycles.

20

Ivan Bozhko, Grygoriy Chetverykov, Yaroslav Kolisnyk

Let us consider the primitive data types which other
types consist of:

•	 The int type represents a 64- bit signed (two's
complement) integer.

•	 The double type represents a double-precision
floating-point number.

•	 The bool type represents a Boolean value, either
true or false.

•	 The qubit type represents a quantum bit or qubit.
They are opaque to the user; the only operation possi-
ble with them, other than passing them to another op-
eration, is to test for identity (equality). Ultimately, ac-
tions on Qubits are implemented by calling operations
in the Q# standard library.

•	 The Pauli type represents an element of the sin-
gle-qubit Pauli group. This type is used to denote the
base operation for rotations and to specify the basis of
a measurement. This type is a discriminated union with
four possible values: PauliI, PauliX, PauliY and PauliZ.

•	 The Result type represents the result of a meas-
urement. This type is a discriminated union with two
possible values: One and Zero. Zero indicates that the
+1 eigenvalue was measured; One indicates the -1 ei-
genvalue.

•	 The Range type represents a sequence of integers.
•	 The String type is a sequence of Unicode charac-

ters that is opaque to the user once created. This type is
used to report messages to a classical host.

It is also necessary to note that having the type sys-
tem described above means a set of reserved keywords:
true, false, PauliI, PauliX, PauliY, PauliZ, Zero and
One.

Outside of the primitive types, there are also another
types we will consider now in more detail.

Given any valid Q# type ‘T there is a type that rep-
resents an array of values of type ‘T. This array type is
represented as ‘T[] for example, Qubit[] or Int[][].

In the second example, note that this represents a
potentially jagged array of arrays, and not a rectangular
two-dimensional array. Q# does not include support for
rectangular multi-dimensional arrays.

Given any valid Q# types ‘T1, ‘T2, ‘T3, etc.,
there is a type that represents a tuple of values of
types 'T1, 'T2, 'T3, etc., respectively. This tuple type is
represented as ('T1, 'T2, 'T3, …). Any number of types
may be tupled together. The empty tuple, (), is equiva-
lent to unit in F#.

It is possible to create arrays of tuples, tuples of ar-
rays, tuples of sub-tuples, etc.

Tuple instances are immutable. Q# does not provide
a mechanism to change the contents of a tuple once
created.

It is also possible to create a singleton (single-ele-
ment) tuple, ('T1), such as (5) or ([1;2;3]). However,
Q# treats a singleton tuple as completely equivalent to
a value of the enclosed type. That is, there is no differ-
ence between 5 and (5), or between 5 and (((5))), or be-
tween (5, (6)) and (5, 6).

This equivalence applies for all purposes, includ-
ing assignment and expressions. It is just as valid to
write (5)+3as to write 5+3, and both expressions will
evaluate to 8. We refer to this property as singleton tuple
equivalence.

There is also a possibility for creating user-defined
types. A Q# file may define a new named type based on
a standard type. Any legal type may be used as the base
for a user-defined type.

User-defined types may be used anywhere any other
type may be used. In particular, it is possible to define
an array of a user-defined type and to include a user-
defined type as an element of a tuple type.

It is not possible to create recursive type structures.
That is, the type that defines a user-defined type may
not be a tuple type that includes an element of the user-
defined type. More generally, user-defined types may
not have cyclic dependencies on each other.

The mutability of instances of user-defined types is
the same as the mutability of instances of the base type
of the user-defined type. Specifically, instances of user-
defined types based on tuples are immutable; instances
of user-defined types based on arrays are potentially
mutable.

Effectively, a user-defined type is a subtype of the
base type. Thus, a value of a user-defined type may be
used anywhere a value of the base type is expected. This
is applied recursively.

For example, suppose type IntPair is a user-defined
type with base type (Int, Int), and type IntPair2 is
a user-defined type with base type IntPair. A value
of type IntPair2 may be used anywhere a value of
type IntPair2, IntPair, or (Int, Int) is expected. A
value of type IntPair may be used anywhere a value of
type IntPair or (Int, Int) is expected.

Different user-defined types based on the same base
type are treated as distinct and unrelated types. In the
previous example, if IntPair3 is also a user-defined type
with base type (Int, Int), then IntPair and IntPair3 are
unrelated and a value of one may not be used where a
value of the other is expected.

A Q# operation is a quantum subroutine. That is, it
is a callable routine that contains quantum operations.

A Q# function is a classical subroutine used within
a quantum algorithm. It may contain classical code but
no quantum operations. Functions may not allocate or
borrow qubits, nor may they call operations. It is pos-
sible, however, to pass them operations or qubits for
processing.

Together, operations and functions are known
as callables.

All Q# callables are considered to take a single value
as input and return a single value as output. Both the in-
put and output values may be tuples. Callables that have
no result return the empty tuple, (); callables that have
no input take the empty tuple as input.

The basic signature for any callable is written
as ('Tinput => 'Tresult) or ('Tinput -> 'Tresult), where

21

both 'Tinput and 'Tresult are type specifiers. The first
form, with =>, is used for operations; the second form,
with ->, for functions. For example, ((Qubit, Pauli) =>
Result) represents the signature for a possible single-
qubit measurement operation.

Function types are completely specified by their sig-
nature. For example, a function that computes the sine
of an angle would have type (Double -> Double).

Operations – but not functions – may allow the ap-
plication of one or more functors. Functors are meta-
operations that generate a variant of a base operation.

Operation types are specified by the their signa-
ture and the list of functors they support. For example,
the Pauli X operation has type (Qubit => () : Adjoint,
Controlled). An operation type that does not support
any functors is specified by its signature alone, with no
trailing :.

Callable signatures may contain type parameters.
Type parameters are indicated by a symbol prefixed by
a single quote; for example, 'A is a legal type parameter.
Type-parameterized functions and operations are
similar to generic functions in many programming
languages, but Q# does not provide a full generic type/
function capability.

A type parameter may appear more than once in a
single signature. For example, a function that applies
another function to each element of an array and
returns the collected results would have signature(('A[],
'A->'A) -> 'A[]). Similarly, a function that returns
the composition of two operations might have
signature ((('A=>'B), ('B=>'C)) -> ('A=>'C)).

When invoking a type-parameterized callable, all
arguments that have the same type parameter must be
of the same type, or be compatible with the same type;
that is.

Q# does not provide a mechanism for constraining
the possible types that might be substituted for a type
parameter. Thus, type parameters are primarily useful
for functions on arrays and for composing callables.

An operation with additional functors supported
may be used anywhere an operation with fewer functors
but the same signature is expected. For instance, an
operation of type (Qubit=>():Adjoint) may be used
anywhere an operation of type (Qubit=>()) is expected.

Q# is covariant with respect to callable return types:
a callable that returns a type 'A is compatible with a
callable with the same input type and a result type
that 'A is compatible with.

Q# is contravariant with respect to input types: a
callable that takes a type 'A as input is compatible with a
callable with the same result type and an input type that
is compatible with 'A.

A functor in Q# is a factory that defines a new
operation from another operation. Functors have access
to the implementation of the base operation when
defining the implementation of the new operation.
Thus, functors can perform more complex functions
than traditional higher-level functions.

A functor is used by applying it to an operation,
returning a new operation. For example, the operation
that results from applying the Adjoint functor to
the Y operation is written as (Adjoint Y). The new
operation may then be invoked like any other operation.
Thus, (Adjoint Y)(q1) applies the adjoint functor to
the Yoperation to generate a new operation, and applies
that new operation to q1. Similarly, (Controlled X)
(controls, target).

The two standard functors in Q# are Adjoint and
Controlled.

In quantum computing, the adjoint of an operation
is the complex conjugate transpose of the operation.
For operations that implement a unitary operator, the
adjoint is the inverse of the operation. For a simple
operation that just invokes a sequence of other unitary
operations on a set of qubits, the adjoint may be
computed by applying the adjoints of the sub-operations
on the same qubits, in the reverse sequence.

Given an operation expression, a new operation
expression may be formed using the Adjoint functor,
with the base operation expression enclosed in
parentheses, (and). The new operation has the same
signature and type as the base operation. In particular,
the new operation also allows Adjoint, and will
allow Controlled if and only if the base operation did.

For instance, (Adjoint QFT) designates the adjoint
of the QFT operation.

The controlled version of an operation is a new
operation that effectively applies the base operation
only if all of the control qubits are in a specified state.
If the control qubits are in superposition, then the base
operation is applied coherently to the appropriate part
of the superposition. Thus, controlled operations are
often used to generate entanglement.

In Q#, controlled versions always take an array
of control qubits, and the specified state is always for
all of the control qubits to be in the computational
(PauliZ) One state, |1⟩|1>. Controlling based on other
states may be achieved by applying the appropriate
Clifford operations to the control qubits before the
controlled operation, and then applying the inverses
of the Cliffords after the controlled operation. For
example, applying an X operation to a control qubit
before and after a controlled operation will cause the
operation to control on the Zero state (|0⟩|0⟩) for that
qubit; applying an H operation will control on the Pa
uliX Zero state |+⟩:=(|0⟩+|1⟩)/√2|+⟩:=(|0⟩+|1⟩)/2 rather
than the PauliZ Zero state.

Given an operation expression, a new operation
expression may be formed using the Controlled functor,
with the base operation expression enclosed in
parentheses, (and). The signature of the new operation
is based on the signature of the base operation. The
result type is the same, but the input type is a two-tuple
with a qubit array that holds the control qubit(s) as the
first element and the arguments of the base operation
as the second element. If the base operation took no

THE Q# PROGRAMMING LANGUAGE INVESTIGATION

22

arguments, (), then the input type of the controlled
version is just the array of control qubits. The new
operation allows C ontrolled, and will allow Adjoint if
and only if the base operation did.

If the base function took only a single argument,
then singleton tuple equivalence will come into play
here. For instance, C ontrolled(X) is the controlled
version of the X operation. X has type (Qubit =>
() : Adjoint, Controlled), so C ontrolled(X) has
type ((Qubit[], (Qubit)) => () : Adjoint, Controlled);
because of singleton tuple equivalence, this is the same
as ((Qubit[], Qubit) => () : Adjoint, Controlled).

Similarly, C ontrolled(Rz) is the controlled version
of the R z operation. R z has type ((Double, Qubit)
=> () : Adjoint, Controlled), so C ontrolled(Rz) has
type((Qubit[], (Double, Qubit)) => () : Adjoint,
Controlled). For example, ((Controlled(Rz))
(controls, (0.1, target)) would be a valid invocation
of Controlled(Rz).

As another example, C NOT(control, target) can
be implemented as (Controlled(X))([control],
target). If a target should be controlled by 2 control
qubits (CCNOT), we can use (Controlled(X))
([control1;control2], target) statement.

2.3.	 Q# expressions
Expressions is an important part of any program-

ming language and Q# is not an exception. Let us con-
sider some of the important expressions.

Given any expression, that same expression en-
closed in parentheses is an expression of the same type.
For instance, (7) is an Int expression, ([1;2;3]) is an ex-
pression of type array of Ints, and ((1,2)) is an expres-
sion with type (Int, Int).

The equivalence between simple values and single-
element tuples removes the ambiguity between (6) as a
group and (6) as a single-element tuple.

The name of a symbol bound or assigned to a val-
ue of type ‘T is an expression of type ‘T. For instance,
if the symbol count is bound to the integer value 5,
then count is an integer expression.

Numeric expressions are expressions of
type Int or Double. That is, they are either integer or
floating-point numbers.

Int literals in Q# are identical to integer literals in
C#, except that no trailing “l” or “L” is required (or
allowed). Hexadecimal integers are supported with a
“0x” prefix.

Double literals in Q# are identical to double literals
in C#, except that no trailing “d” or “D” is required (or
allowed).

Given an array expression of any element type,
an Int expression may be formed using the Length built-
in function, with the array expression enclosed in pa-
rentheses, (and). For instance, if a is bound to an array,
then Length(a) is an integer expression. If b is an array
of arrays of integers, Int[][], then Length(b) is the num-
ber of sub-arrays in b, and Length(b[1]) is the number
of integers in the second sub-array in b.

Given two numeric expressions, the binary op-
erators +, -, *, and / may be used to form a new nu-
meric expression. The type of the new expression
will be Double if both of the constituent expressions
are Double, or will be an Int expression if both are in-
tegers.

Given two integer expressions, a new integer expres-
sion may be formed using the % (modulus), ^ (pow-
er), &&& (bitwise AND), ||| (bitwise OR), ^^^ (bitwise
XOR), <<< (arithmetic left shift), or >>> (arithmetic
right shift) operations. The second parameter to either
shift operation must be greater than or equal to zero.
The behavior for shifting negative numbers is unde-
fined.

Given any numeric expression, a new expression
may be formed using the - unary operator. The new ex-
pression will be the same type as the constituent expres-
sion.

Given any integer expression, a new integer expres-
sion may be formed using the ~~~ (bitwise comple-
ment) unary operator.

The only Qubit expressions are symbols that are
bound to Qubit values or array elements of Qubit arrays.
There are no Qubit literals.

The four Pauli values, PauliI, PauliX, PauliY,
and PauliZ, are all valid Pauli expressions.

Other than that, the only Pauli expressions are sym-
bols that are bound to Pauli values or array elements
of Pauli arrays.

The two R esult values, O ne and Zero, are val-
id Result expressions.

Other than that, the only R esult expressions are
symbols that are bound to R esult values or array ele-
ments of Result arrays. In particular, note that One is
not the same as the integer 1, and there is no direct con-
version between them. The same is true for Zero and 0.

Given any three Int expressions start, step,
and stop, start .. step .. stop is a range expression whose
first element is start, second element is start+step, third
element is start+step+step, etc., until stopis passed.
A range may be empty if, for instance, step is posi-
tive and stop < start. The last element of the range will
be stop if the difference between start and stop is an in-
tegral multiple of step; that is, the range is inclusive at
both ends.

Given any two Int expressions start and stop, start
.. stop is a range expression that is equal to start .. 1 ..
stop. Note that the implied step is +1 even if stop is less
than start; in such a case, the range is empty. For exam-
ple, 1..3 is the range 1, 2, 3.

A callable literal is the name of an operation or
function defined in the compilation scope. For in-
stance, X is an operation literal that refers to the stand-
ard library X operation, and Message is a function lit-
eral that refers to the standard library Message function.

If an operation supports the Adjoint functor,
then (Adjoint op) is an operation expression. Similarly,

Ivan Bozhko, Grygoriy Chetverykov, Yaroslav Kolisnyk

23

if the operation supports the C ontrolled functor,
then (Controlled op) is an operation expression.

Q# callables are allowed to be directly or indirectly
recursive. That is, an operation or function may call it-
self, or it may call another callable that directly or indi-
rectly calls the callable operation.

There are two important comments about the use of
recursion, however:

•	 The use of recursion in operations is likely to
interfere with certain optimizations. This may have
a substantial impact on the execution time of the
algorithm.

•	W hen executing on an actual quantum device,
stack space may be limited, and so deep recursion may
lead to a runtime error. In particular, the Q# compiler
and runtime do not identify and optimize tail recursion.

3. Q# program creation

In order to illustrate the possibilities of quantum
computing via Q# language we will create a simple pro-
gram in Visual Studio. As a precondition, Microsoft
Quantum Development Kit should be installed on the
computer.

Firstly, we should open Visual Studio 2017 and cre-
ate a solution of the type “Q# Application”. Afterwards,
optionally we should update the necessary NuGet pack-
ages. Now, it is possible to create a program.

Consider a simple program of setting a qubit state
(see Fig. 1):

Fig. 1. The qubit state setting function

As it can be seen from the code, the standard tools
allow us to do everything via the standard library. Thus,
we include the necessary standard tools on the first and
the second lines and create a Set function accepting
two parameters of Result and Qubit types respectively.
Then, we get the current qubit state via M() function
and compare the current state with the desired one. If
they are not equal, we set the necessary state.

It should be clear from this example that having such
a dedicated tool for a special computing paradigm as a
language simplifies programming dramatically, since
using other tools (e.g. calling an API) would require
much more code.

Consider a more complidated example (see Fig. 2):

Fig. 2. A program checking if the qubit state was changed

It is another Q# program illustraging the conveni-
ence of using a dedicated programming language for
quantum computing. In this code, we retrieve the re-
sults in the FOR loop and checking the values.

The using statement is similar to C# language. Thus,
the code allocates a Qubit array with the length 1 and
will make sure that it has been deaccocated at the end
of the using block.

Conclusion

In scope of the article the basic tools of quantum
computing have been investigated. The investigation
covered Microsoft Quantum Development Kit, IBM
Quantum Experience, Rigetti Forest and ProjectQ.

Since the first technology mentioned includes a sep-
arate Q# language for quantum computing, it was the
main focus area of the given article.

Quantum computing technologies are important
nowadays because of the research taking place for creat-
ing a quantum computer by scientific and technological
companies, hence the investigation of the existing tools
for quantum programs development is also important.

However, the given article only provides a brief
overview of the currently existing technologies, so a
deeper investigation including practical comparison of
the programs created via the tools is a focus area for fu-
ture research.
References

1. Ю. И. Манин. Вычислимое и невычислимое. / Манин И.
Ю. – М.: Сов. радио, 1980. – 128 с. 2. C. C. Moran. Quintuple:
A tool for introducing quantum computing into the classroom.
/ Christine C. Moran – Frontiers in Physics 6(JUL). – p. 69.
3. L. Chen. Report on Post-Quantum Cryptography. / Lily
Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, Daniel Smith-Tone – NIST Interagency
Report 8105, 2016. – 15 p. 4. The Q# Programming Language
[Online]. Available: https://docs.microsoft.com/en-us/
quantum/quantum-qr-intro?view=qsharp-preview

Надійшла до редколегії 22.03.2018

THE Q# PROGRAMMING LANGUAGE INVESTIGATION

